
 Подготовительная
программа по

программированию на
С/C++

Валентина Глазкова

Занятие №1

О курсе

 Курс посвящён изучению и реализации основных
принципов объектно-ориентированного и обобщённого
программирования на языке С++

 Цель курса — подготовка студентов к поступлению и
обучению в технопарке; формирование практических
навыков и умений в области применения языков С и С++

 Навыки — работа с памятью, реализация основных
структур данных на языке С, реализация средств
инкапсуляции, полиморфизма и наследования в
программах на языке С++, обработка исключительных
ситуаций, базовые навыки обобщённого
программирования, базовые навыки использования
стандартной библиотеки С++

2

О курсе

 Контроль знаний — в рамках курса проводятся
практические занятия, на каждом из которых
оценивается выполнение домашних заданий; по
окончании курса проводится экзамен

 Состав курса — 9 лекций, 11 практикумов

 Регламент:
 Вопросы ― общезначимые : в любое время

(по поднятию руки!), индивидуальные: в перерыве или
после занятия

3

 Окончила с отличием факультет Вычислительной математики и
кибернетики МГУ им. М.В.Ломоносова (2006)

 Кандидат физико-математических наук (2008, специальность
05.13.11, тема диссертации «Исследование и разработка методов
построения программных средств классификации многотемных
гипертекстовых документов»)

 Ассистент кафедры Автоматизации систем вычислительных
комплексов факультета Вычислительной математики и
кибернетики МГУ им. М.В. Ломоносова (с 2009 года по настоящее
время)

 Автор более 20 научных статей и патента РФ на полезную модель
«Система анализа и фильтрации интернет-трафика на основе
методов классификации многотемных документов» (2009).

Валентина Глазкова

О себе

4

Обзор курса (1/5)

 Лекция №1. Основы работы с памятью в программах на
языке С
 Основы препроцессорной обработки. Классы памяти в языке

С. Указатели и арифметика указателей. Оформление
процедурного кода. Антишаблоны. Реализация
журналирования. Работа с аргументами командной строки.

 Практикум №1. Решение задач на тему «Основы работы
с памятью в программах на языке С».

 Лекция №2. Реализация структур данных на языке С.
 Одномерные массивы и строки. Многомерные массивы.

Списки, стеки, очереди, деревья. Выделение динамической
памяти.

 Практикум №2,3. Решение задач на тему «Реализация
структур данных на языке С»

5

Обзор курса (2/5)

 Лекция №3. Объектная модель языка С++
 Основные принципы объектно-ориентированной

парадигмы. Определение и состав класса. Работа с
членами класса и указателями на них. Дружественные
классы и функции. Вложенные типы.

 Практикум №4. Решение задач на тему «Объектная
модель языка С++».

 Лекция №4. Специальные вопросы инкапсуляции.
 Инициализация, копирование, преобразование и

уничтожение объектов. Праводопустимые выражения в
C++11.

 Практикум №5. Решение задач на тему
«Специальные вопросы инкапсуляции».

6

Обзор курса (3/5)

 Лекция №5. Специальные вопросы наследования и
полиморфизма. Класс как область видимости
 Раннее и позднее связывание. Перегрузка и перекрытие членов

класса. Наследование как способ добавления новых членов
класса. Наследование как способ изменения поведения класса.
Виртуальные функции. Наследование и агрегирование. Класс как
область видимости. Перегрузка функций. Перегрузка операций.

 Практикум №6,7. Решение задач на тему «Специальные
вопросы наследования и полиморфизма. Класс как область
видимости. Перегрузка».

 Лекция №6. Объектно-ориентированное программирование.
 Применение и эффективная реализация принципов объектно-

ориентированного программирования при реализации
приложений на языке С++.

 Практикум №8. Решение задач на тему «Реализация
принципов объектно-ориентированной парадигмы в
программах на языке С++».

7

Обзор курса (3/5)

 Лекция №7. Модульное программирование. Шаблоны
классов и методов
 Пространства имён. Ортодоксальная каноническая форма

класса. Разбиение программы на файлы и модули.
Необходимость в обобщённом программировании. Шаблоны
классов и методов. Параметры шаблонов. Специализация,
конкретизация и перегрузка шаблонов.

 Практикум №9. Решение задач на тему «Шаблоны
классов и методов».

 Лекция №8. Обработка исключительных ситуаций.
 Понятие, поддержка и технология обработки

исключительных ситуаций. Реализация журналирования.

 Практикум №10. Решение задач на тему «Обработка
исключительных ситуаций».

8

Обзор курса (4/5)

 Лекция №9. Стандартная библиотека шаблонов STL
 Контейнеры и итераторы. Примеры шаблонных классов-

контейнеров (vector, list, map, set), сложность основных
методов работы с ними. Основные алгоритмы
библиотеки STL.

 Практикум №11. Решение задач на тему
«Стандартная библиотека шаблонов STL».

Отчётность по курсу: основана на балльно-рейтинговой
системе – каждый практикум + экзамен в конце курса
оценивается по десятибалльной системе

Итоговая оценка: 0–84 неудовлетворительно, 85-99
удовлетворительно, 100-109 хорошо, 110–120 отлично

9

Обзор курса (5/5)

 Оценка заданий практикума:
 10 ― задача сдана без замечаний

 9, 8 ― задача сдана с несущественными замечаниями

 7, 6 ― задача работает на всех тестах, но имеет
существенные недостатки

 4, 5 ― работают некоторые частные решения задачи

 1, 2, 3 ― выполнен начальный уровень решения задачи

10

Рекомендуемая литература (1/2)

 Керниган Б., Ритчи Д. Язык программирования C. – Вильямс, 2009. –
292 с.

 Прата С. Язык программирования C. Лекции и упражнения. —
Вильямс, 2013. — 960 с.

 Прата С. Язык программирования C++. Лекции и упражнения. —
Вильямс, 2012. — 6 е изд. — 1248 с.

 Столяров А.В. Оформление программного кода: методическое
пособие. – М.: МАКС Пресс, 2012. – 100 с.
http://www.stolyarov.info/books/codestyle

 Столяров А.В. Введение в язык Си++. -М: МАКС Пресс, 2012. – 3-е
изд. – 127 с. http://www.stolyarov.info/books/cppintro

 Макконнелл С. Совершенный код. Мастер-класс. – Русская
редакция, 2012. – 896 с.

 Седжвик Р. Алгоритмы на С++. – Вильямс, 2011. – 1056 с.

11

Рекомендуемая литература (2/2)

 Шилдт Г. Полный справочник по С++. – Вильямс, 2007. – 800 с.

 Справка по языкам С/C++: http://ru.cppreference.com/w/, http://en.
cppreference.com/w/

 Липпман С., Лажойе Ж. Язык программирования С++. Вводный
курс. – Невский диалект, ДМК Пресс. – 1104 с.

 Липпман С., Лажойе Ж., Му Б. Язык программирования С++.
Вводный курс. – Вильямс, 2007. – 4-е изд. – 896 с.

 Страуструп Б. Программирование. Принципы и практика
использования С++. – Вильямс, 2011. – 1248 с.

 Страуструп Б. Язык программирования С++. – Бином, 2011. – 1136 с.

 https://ejudge.ru/study/3sem/style.shtml

12

• Указатели и одномерные массивы.

• Основы препроцессорной обработки.

• Классы памяти в языке С.

• Оформление процедурного кода.
Антишаблоны.

• Реализация журналирования.

• Работа с аргументами командной строки.

13

Основы работы с памятью в программах
на языке С

Указатели и арифметика указателей. Тип
ptrdiff_t

 Стандартные указатели типа T* как составной тип языка C и
символический способ использования адресов можно условно
считать «шестым классом памяти», важной особенностью
которого является поддержка специфической арифметики.

 Пусть p, p2 — указатели типа T*, а n — значение целого типа
(желательно — ptrdiff_t). Тогда:
 p + n либо n + p — адрес, смещенный относительно p на n единиц

хранения размера sizeof(T) в направлении увеличения адресов
(«вправо»);

 p – n — адрес, смещенный относительно p на n единиц хранения
размера sizeof(T) в направлении уменьшения адресов («влево»);

 p++ либо ++p, p-- либо --p — аналогичны p + 1 и p – 1, соответственно;
 p – p2 — разность содержащихся в указателях адресов, выраженная в

единицах хранения и имеющая тип ptrdiff_t. Разность положительна
при условии, что p расположен в пространстве адресов «правее» p2.

14

Одномерные массивы

 Для одномерного массива T a[N] в языке C справедливо:
 массивы поддерживают полную и частичную

инициализацию, в том числе с помощью выделенных
инициализаторов;

 в частично инициализированных массивах опущенные
значения трактуются как нули;

 элементы массивов размещаются в памяти непрерывно и
занимают смежные адреса, для обхода которых может
использоваться арифметика указателей;

 sizeof(a) возвращает размер массива в байтах (не элементах!);
 sizeof(a[0]) возвращает размер элемента в байтах.
 строки char c[N] конструктивно являются частными случаями

массивов, при этом в корректных строках c[sizeof(c) – 1] == ‘\0‘;

 Принятая система обозначения массивов является
лишь особым способом применения указателей.

15

Одномерные массивы: пример

 // с освобождением скобок

 int a[] = {1, 2, 3};

 // эквивалентно int a[3] = {1, 2, 3};

 // с частичной неявной инициализацией

 int b[5] = {1, 2, 3};

 // эквивалентно:

 // int b[5] = {1, 2, 3, 0, 0};

 // с выделенными инициализаторами

 int c[7] = {1, [5] = 10, 20, [1] = 2};

 // эквивалентно:

 // int c[7] = {1, 2, 0, 0, 0, 10, 20};

16

Одномерные массивы и указатели

 Пусть T a[N] — массив. Тогда:
 имя массива является константным указателем на 0-й

элемент:
a == &a[0];

 для любых типов и длин массивов справедливо:
&a[i] == a + i и a[i] == *(a + i);

 С учетом этого эквивалентны прототипы:
 int f (double [], int);
 int f (double *, int);

 Передать массив в функцию можно так, как показано
выше, или как пару указателей: на 0-й и N-й
элементы (обращение к элементу a[N] без его
разыменования допустимо):
 int f (double *, double *);

17

Одномерные массивы: примеры

int findmax(int *arr, int count)

{

 int idx = 0;

 for (int i = 1; i < count; ++i) {

 if (arr[i] > arr[idx]) { idx = i; }

 }

 return idx;

}

int getmax2(const int *arr, int count)

{

 int prev_max = arr[0], curr_max = arr[1];

 if (arr[1] < arr[0]) { curr_max = arr[0]; prev_max = arr[1]; }

 for (int i = 2; i < count; i++) {

 if (arr[i] >= curr_max) { prev_max = curr_max; curr_max = arr[i]; }

 }

 return prev_max;

}
18

Указатели и строки: примеры (1/3)

char *strcat(char *str1, const char *str2)

{

 char *cp = str1;

 while (*cp) cp++;

 while (*cp++ = *str2++);

 return str1;

}

int strlen(const char *str)

{

 const char *eos = str;

 while (*eos++);

 return (int) (eos - str - 1);

}

19

Указатели и строки: примеры (2/3)

int strcmp(const char *str1, const char *str2)
{
 while(*str1==*str2 && *str1)
 {
 str1++; str2++;
 }
 return *str1-*str2;
}

char * strcpy(char * str1, const char * str2)

{

 char * d = str1;

 while (*d++ = *str2++);

 return str1;

}

 20

Указатели и строки: примеры (3/3)

char * substr(char* str, char* sub)

{

 int i, j;

 for(i=j=0; str[i]!='\0'; i++)

 {

 while((str[i+j]!='\0')&&(sub[j]==str[i+j])) j++;

 if(sub[j] == '\0') return &str[i];

 j = 0;

 }

 return NULL;

}

char *strchr(const char *str, int ch)

{

 while (*str && *str != (char) ch) str++;

 if (*str == (char) ch) return (char *) str;

 return NULL;

}

21

Основы препроцессорной обработки

 Препроцессор анализирует исходный код программы до
компиляции, следуя предназначенным ему директивам.

 Директивы препроцессора:
 имеют первым символом # («решетку»);
 распространяют свое действие от точки вхождения до конца

файла.

 Типичными директивами препроцессора являются:
 #include — включает в текст файлы с исходным кодом;
 #define — вводит в исходный код символические константы и

макроопределения (обратная директива — #undef);
 #if, #ifdef, #ifndef, #else, #elif, #endif — реализуют условное

включение фрагментов исходного кода в текст, передаваемый
компилятору;

 #error — возбуждает ошибку времени компиляции;
 #pragma once — контролирует, чтобы конкретный исходный

файл при компиляции подключался строго один раз.

22

Основы препроцессорной обработки:
пример использования #define

#define SIZE 100

#define PRINT_X printf("X:\t%7d\n", x)

#define CUBE(N) ((N) * (N) * (N))

int a[SIZE];

// эквивалентно: int a[100];

PRINT_X;

// эквивалентно: printf("X:\t%7d\n", x);

printf("%d\n", CUBE(SIZE));

// эквивалентно:

// printf("%d\n", ((100) * (100) * (100));

23

Основы препроцессорной обработки:
пример условной компиляции и #error

// выбор генератора псевдослучайных чисел

#ifdef ANSI_C_LIKE

#define A 1103515245

#define C 12345

#else

#define A 22695477

#define C 1

#endif

/* выброс ошибки, если компилятор не является компилятором C++. __cplusplus - макрос,
который задаётся компилятором (макрос объявлен, если работает компилятор С++, и не
объявлен – если компилятор Си)*/

#ifndef __cplusplus

#error A C++ compiler is required!

#endif

24

Основы препроцессорной обработки:
пример использования #pragma

File «grandfather.h»

 #pragma once

 struct f { int member; };

File «father.h»

 #include "grandfather.h"

File «child.c»

 #include "grandfather.h"

 #include "father.h"

25

Модели управления памятью
и области видимости объектов данных

 Предлагаемые языком C модели управления объектами
данных (переменными) закреплены в понятии класса
памяти, которое охватывает:
 время жизни — продолжительность хранения объекта в

памяти;
 область видимости — части исходного кода программы, из

которых можно получить доступ к объекту по
идентификатору;

 связывание — части исходного кода, способные обращаться
к объекту по его имени.

 Для языка C характерны три области видимости:
 блок — фрагмент кода, ограниченный фигурными скобками

(составной оператор), либо составной оператор и
предшествующий заголовок функции или заголовок
оператора for, while, do while и if;

 прототип функции;
 файл.

26

Связывание объектов данных

 Объекты данных, видимые в пределах блока и
прототипа функции, связывания не имеют (замкнуты в
областях, где определены).

 Для объектов, видимых в пределах файла (глобальных),
язык предлагает два варианта связывания:
 внутреннее — объект является «приватным» для файла и

может использоваться лишь в нем (но любой функцией!);

 внешнее — объект может использоваться в любой точке
многофайловой программы.

27

Связывание объектов данных:
пример

// область видимости: прототип функции

int foo(double *d, int n);

// область видимости: блок

for(int i = 0; i < n; i++) {

 int bar;

 // ...

}

// область видимости: файл, внутреннее связывание

static int count = 0;

// область видимости: файл, внешнее связывание

double accuracy = 0.001;

28

Время жизни объектов данных

 Объекты данных в программах на языке С имеют
статическую или автоматическую
продолжительность хранения:
 время жизни статических объектов тождественно времени

выполнения программы;

 время жизни автоматических объектов в целом тождественно
времени выполнения охватывающего их блока.

 Статическими являются, главным образом, объекты,
видимые в пределах файла. Спецификатор static при
таком объекте определяет только тип связывания, но не
время жизни объекта.

 Автоматическими является большинство объектов,
видимых в пределах блока.

29

Инициализация объектов данных

 Статические объекты неявно инициализируются
нулем (0, ‘\0‘), автоматические объекты неявно вообще
не инициализируются.

 Для явной инициализации статических объектов
должны использоваться константные выражения,
вычислимые компилятором.

 Например:

 static char space = 0x20; // верно

 static size_t int_sz = sizeof(int); // верно

 static size_t int10_sz = 10 * int_sz; // неверно

30

Классы памяти в языке C

31

Класс памяти Время жизни
Область
видимости

Тип
связывания

Точка определения

Автоматический Автоматическое Блок Отсутствует В пределах блока,
опционально auto

Регистровый Автоматическое Блок Отсутствует В пределах блока,

register

Статический, без
связывания

Статическое Блок Отсутствует В пределах блока,

static

Статические, с
внешним
связыванием

Статическое Файл Внешнее Вне функций

Статические, с
внутренним
связыванием

Статическое Файл Внутреннее Вне
функций,
static

Автоматические и регистровые
переменные: пример

 // автоматические переменные

 int foo(unsigned u)

 {

 auto int bar = 42;

 // ...

 }

 // регистровые переменные

 int get_total(register int n)

 {

 // ...

 for(register int i = 0; i < n; i++)

 // ...

 }

32

Размещение объектов данных
на регистрах процессора

 Применение ключевого слова register для активно
используемых переменных:
 несет все риски «ручной оптимизации» кода;
 относится к регистрам ЦП (в x86/x86-64: AX, EBX, RCX и т.д.), но не

кэш-памяти ЦП 1-го или 2-го уровня;
 является рекомендацией для компилятора, но не требованием

к нему;
 вполне может игнорироваться компилятором, который будет

действовать «на свое усмотрение» (например, разместит
переменную на регистре, потребность в котором возникнет
позднее всего).

 Операция взятия адреса переменной со спецификатором
register недопустима вне зависимости от того, размещена ли
она фактически на регистре.

33

Статические объекты с внутренним
связыванием и без связывания:
пример

// без связывания:

// статические внутренние объекты функций

int callee(int n)

{

 static int counter = 0; // не часть функции!

 // …

}

// с внутренним связыванием:

// статические внутренние объекты файлов

static double epsilon = 0.001;

int foo(double accuracy)

{

 if(accuracy < epsilon) // ...

}

34

Статические объекты с внешним
связыванием: пример

// с внешним связыванием:

// статические внешние объекты ("внешняя память")

double time; // внешнее определение

long int fib[100]; // внешнее определение

extern char space; // внешнее описание

// (объект определен в другом файле)

int main(void)

{

 extern double time; // необязательное описание

 extern long int fib[]; // необязательное описание;

 // размер массива необязателен

 // ...

}

35

Классы памяти функций

 Применительно к невстраиваемым функциям различают
два класса памяти:
 внешний — выбирается компилятором по умолчанию и

позволяет ссылаться на функцию (вызывать ее) из любой
точки многофайловой программы;

 статический — выбирается при наличии спецификатора static
и позволяет изолировать функцию в том файле, где она
определена.

 Например:

 int one(void); // внешнее определение

 // статическое определение

 static int two(void);

 // необязательное внешнее описание

 extern int three(void);

36

Оформление процедурного кода

 Выбор прототипов функций
 прототипы отражают поток данных (англ. dataflow)

 использование const при передаче параметров

 передача больших объектов через указатель

 Выражение алгоритмов в терминах процедурного
языка
 выбор конструкций ветвления и циклов

 обработка частных случаев – дублирование кода

 Группировка функций, отвечающих за один уровень
функционала – ввод, алгоритм, вывод на экран (в файл)

 Стиль оформления — отступы, пробелы, длина строк,
имена и т.п. (пример правил: https://ejudge.ru/study/3sem/style.shtml)

37

Оформление процедурного кода:
пример

#include <stdio.h>

#include <math.h>

#include <string.h>

//вызов функции по заданному имени и аргументу

double call_by_name(const char *name, int arg)

{

 static const char *names[] = {"sin", "cos", "tan", NULL};

 static double (*fp[])(double) = {sin, cos, tan};

 for (int i=0; names[i]!=NULL; i++)

 if (strcmp(names[i],name) == 0)

 {

 //вызов функции по i-му указателю в массиве fp

 return ((*fp[i])(arg));

 }

 return 0.0;

}

38

Оформление процедурного кода:
антишаблоны (1/3)

 Использование оператора безусловного перехода к
метке (goto) – только вперёд (например, для выхода из
вложенных циклов и обработки ошибок)

 «Загадочный» код (англ. cryptic code) — выбор
малоинформативных, часто однобуквенных
идентификаторов, не сопровождаемых комментариями
автора

 «Жесткий» код (англ. hard code) — запись конфигурационных
параметров как строковых, логических и числовых
литералов, рассеянных по исходному коду и затрудняющих
настройку и сопровождение программной системы

 Спагетти-код (англ. spagehetti code) — несоблюдение правил
выравнивания, расстановки пробельных символов и т.д., а
также превышение порога сложности одной процедуры
(функции); простой и удобной мерой такого порога
сложности является высота экрана

39

Оформление процедурного кода:
антишаблоны (2/3)

 Магические числа (англ. magic numbers) — определять
как символические константы все числовые литералы
за исключением, может быть, 0, 1 и -1

 Применение функций как процедур (англ. functions as
procedures) — например, функция scanf языка C
возвращает целочисленный результат и его
необходимо использовать в своих программах

 «Божественные» функции (англ. God functions) —такие
функции берут на себя — в разных сочетаниях — ввод
данных, вычисления и вывод результатов на экран,
диск, в поток и т.д. или иные задачи, каждая из который
достойна оформления как самостоятельной функции

 40

Оформление процедурного кода:
антишаблоны (3/3)

 Неиспользование переносимых типов — прежде
всего, ptrdiff_t

 «Утечки» памяти (англ. memory leaks)

 Внезапное завершение процесса вместо аварийного
выхода из функции с возвратом кода ошибки

 Использование ветвлений с условиями,
статистически смещенными не к истинному, а к
ложному результату(способствуют образованию
«пузырей» в конвейере микрокоманд и существенно
снижают эффективность кэш-памяти инструкций
микропроцессора)

 Недостижимый код (англ. unreachable code)
41

Реализация журналирования

 Одним из простейших и в вместе с тем эффективных
инструментов отладки программы является журналирование

 Журналирование предполагает вывод в файл (или на экран)
информации о событиях, возникающих в программе, и о
промежуточном состоянии программы (например: факт вызова
функции и данные о ее аргументах, содержимое переменных и
т.п.)

 Отладочные сообщения должны находиться в ключевых узлах
программы и позволять отследить ход ее выполнения

 Вывод на экран буферизируется построчно (‘\n’)

 В случае фатальной ошибки, приводящей к аварийному
завершению программы (наиболее распространена ошибка
сегментации - Segmentation Fault) отладочные сообщения,
находящиеся в буферах, не будут выведены

 Часто бывает удобно иметь возможность оперативно отключать и
включать отладочные выводы

42

Реализация журналирования:
пример (1/2)

Файл debug.h

#ifndef DEBUG_H

#define DEBUG_H

#include <stdio.h>

#define PDEBUG(level, fmt, args,...)

#ifdef DEBUG

#undef PDEBUG

#define PDEBUG(level, fmt, args,...) \

 if(level <= DEBUG)

 printf("%s: %d: " fmt " \n", __FUNCTION__, __LINE__, ## args)

#endif

#endif

 43

Реализация журналирования:
пример (2/2)

#include <stdio.h>

#define DEBUG 10

#include "debug.h"

int main()

{

 int i = 0;

 while(i < 6)

 {

 PDEBUG(1, "i = %d", i);

 i++;

 }

}

 44

$./debug

main: 10: i = 0

main: 10: i = 1

main: 10: i = 2

main: 10: i = 3

main: 10: i = 4

main: 10: i = 5

Работа с аргументами командной строки
(1/2)

 Язык С имеет встроенные средства для получения
аргументов команды непосредственно от командного
процессора

 Функция main() может получать аргументы, с которыми
запущена программа – аргументы командной строки.
Для этого достаточно снабдить функцию main()
набором параметров, которые обычно имеют имена argc
и argv: main(int argc; char *argv[])

 Параметр argc (ARGument Count) получает от командного
процессора информацию о количестве аргументов,
набранных в командной строке, включая и имя самой
команды (argc>= 1)

 45

Работа с аргументами командной строки
(2/2)

 Параметр argv (ARGument Vector) обычно определяется
как массив указателей на строки, каждый из которых
хранит адрес начала отдельного аргумента командной
строки (ragv[0] – ссылается на имя самой команды)

 Пример – вывод на экран аргументов командной
строки программы

46

 #include <stdio.h>

 int main(int argc, char *argv[])

 {

 for(int i=0; i<argc; i++)

 printf(“%s ”, argv[i]);

 return 0;

 }

Спасибо за внимание!

Валентина Глазкова

