
 Подготовительная
программа по

программированию на
С/C++

Валентина Глазкова

Занятие №2

2

Реализация структур данных на языке С

• Многомерные массивы

• Динамические структуры данных

• Списки

• Стеки

• Очереди

• Деревья

Многомерные массивы

 Двумерный массив — объект данных T a[N][M], который:
 содержит N последовательно расположенных в памяти строк

по M элементов типа T в каждой;
 в общем и целом инициализируется аналогично одномерным

массивам;
 по характеристикам выравнивания идентичен объекту T a[N *

M], что сводит его двумерный характер к удобному
умозрительному приему, упрощающему обсуждение и
визуализацию порядка размещения данных.

 Массивы размерности больше двух считаются
многомерными, при этом (N + 1)-мерные массивы
индуктивно определяются как линеаризованные
массивы N-мерных массивов, для которых справедливо
все сказанное об одно- и двумерных массивах.

3

Многомерные массивы: пример

// определение двумерных массивов

int a[2][3] = { {0, 1}, // частичная инициализация строки

 {2, 3, 4}}; // полная инициализация строки

int b[2][3] = {0, 1, 2, 3, 4};

// результаты:

// a: {0, 1, 0, 2, 3, 4}; b: {0, 1, 2, 3, 4, 0}

// определение массивов размерности больше 2

double d[3][5][10];

int32_t k[5][4][3][2];

4

Двумерные массивы и векторы векторов

 Двумерный массив следует отличать от вектора
векторов, работа с которым:
 предполагает двухступенчатую процедуру создания и

удаления;
 гарантирует смежность хранения данных только в пределах

одной строки (аналогичная гарантия предоставляется и в
отношении указателей на строки);

 ведёт к большей фрагментации памяти, но повышает
вероятность успешного выделения в памяти непрерывных
фрагментов (требование памяти объёма ~N2 заменяется
требованием памяти объёма ~N).

 Многомерные массивы и векторы векторов (векторов…)
являются различными структурами данных с разной
дисциплиной использования.

5

Двумерные массивы и векторы
векторов: пример

 // создание вектора векторов

 int **v = (int**)malloc(N * sizeof(int*));

 for(int i = 0; i < N; i++)

 // NB: в каждой строке значение M может быть разным

 v[i] = (int*)malloc(M * sizeof(int));

 // ...

 // удаление вектора векторов

 for(int i = 0; i < N; i++)

 free(v[i]);

 free(v);
6

Многомерные массивы и указатели

 Для многомерных массивов справедлив ряд тождеств,
отражающих эквивалентность соответствующих выражений
языка C. Так, для двумерного массива T a[N][M] справедливо:

 a == &a[0]; a + i == &a[i];

 *a = a[0] == &a[0][0];

 **a == *&a[0][0] == a[0][0];

 a[i][j] == *(*(a + i) + j).

 Использование операции разыменования * не имеет каких-
либо преимуществ перед доступом по индексу, и наоборот.
Трансляция и первой, и второй формы записи в объектный код
приводит в целом к одинаковым результатам.

7

Многомерные массивы и указатели:
пример

 // указатели на массивы и массивы указателей

 int k[3][5];

 int (*pk)[5]; // указатель на массив int[5]

 int *p[5]; // массив указателей (int*)[5]

 // примеры использования (все — допустимы)

 pk = k; // аналогично: pk = &k[0];

 pk[0][0] = 1; // аналогично: k[0][0] = 1;

 *pk[0] = 2; // аналогично: k[0][0] = 2;

 **pk = 3; // аналогично: k[0][0] = 3;
8

Динамические структуры данных

 Динамические данные

 Размер заранее неизвестен, определяется во время
работы программы

 Память выделяется во время работы программы (для
выделения памяти используются функции malloc, calloc,
realloc; для освобождения – free)

 Структура данных – программная единица,
позволяющая хранить и обрабатывать множество
однотипных и/или логически связанных данных

 Типичные операции

 Добавление данных

 Изменение данных

 Удаление данных

 Поиск данных 9

Динамические структуры данных

10

Реализация: набор узлов, объединенных с помощью ссылок

Структура узла:

Типы структур:

списки

NULL

NULL NULL

односвязный

двунаправленный (двусвязный)

циклические списки (кольца)

деревья графы

NULL

NULL

NULL
NULL

NULL NULL

данные
ссылки на

другие узлы

Односвязный список

Определение
 Динамическая структура данных, состоящая из узлов, каждый

из которых содержит данные и ссылку на следующий узел
списка

Определение (рекурсивное)
 пустая структура – это список;
 список – это начальный узел (голова)

и связанный с ним список.

Отличия от массивов
 Порядок элементов может не совпадать с порядком

расположения элементов данных в памяти
 Порядок обхода списка всегда явно задаётся его внутренними

связями (в односвязном списке можно передвигаться только в
сторону конца списка)

11

NULL

Односвязный список

Основные операции со списками:
 Поиск, вставка, удаление элемента

12

Структура узла:

struct Node {
 char word[20]; // данные
 int count; // данные
 Node *next; // ссылка на следующий элемент
 };
typedef Node *PNode;

Адрес начала списка (головы списка)

PNode Head = NULL;

Создание узла списка

13

PNode CreateNode (char NewWord[])
{

 PNode NewNode = (PNode) malloc(sizeof(Node));
 strcpy(NewNode->word, NewWord);
 NewNode->count = 1;
 NewNode->next = NULL;
 return NewNode;

}

Функция CreateNode (создать узел):
 вход: новое слово, прочитанное из файла;
 выход: адрес нового узла, созданного в памяти.

возвращает адрес
созданного узла новое слово

Добавление узла в начало списка

14

NewNode

Head NULL

NewNode->next = Head; NewNode

Head NULL

NULL

2) Установить новый узел как голову списка:

Head = NewNode;

void AddFirst (Pnode *Head, PNode NewNode)
{

 NewNode->next = Head;
 Head = &NewNode;

}

адрес головы меняется

1) Установить ссылку нового узла на голову списка:

Добавление узла после заданного

15

1) Установить ссылку нового узла на узел, следующий за p:

NewNode->next = p->next;

2) Установить ссылку узла p на новый узел:

p->next = NewNode;

NewNode

p

NULL

NULL

NewNode

p

NULL

void AddAfter (PNode p, PNode NewNode)
{

 NewNode->next = p->next;
 p->next = NewNode;

}

Проход по списку

16

Задача:
 выполнить некоторую операцию с каждым элементом списка.

Алгоритм:
1) установить вспомогательный указатель q на голову списка;

2) если указатель q равен NULL (дошли до конца списка), то стоп;

3) выполнить действие над узлом с адресом q ;

4) перейти к следующему узлу, q->next.

PNode q = Head; // начали с головы
while (q != NULL) { // пока не дошли до конца

 ... // делаем что-то с q
 q = q->next; // переходим к следующему узлу

}

Head NULL

q

Добавление узла в конец списка

17

Задача: добавить новый узел в конец списка.

Алгоритм:
1) найти последний узел q, такой что q->next равен NULL;
2) добавить узел после узла с адресом q (процедура AddAfter).

Особый случай: добавление в пустой список.

void AddLast (PNode *Head, PNode NewNode)
{

 PNode q = *Head;
 if (Head == NULL) {
 AddFirst(Head, NewNode);
 return;
 }
 while (q->next) q = q->next;
 AddAfter (q, NewNode);

}

особый случай – добавление в
пустой список

ищем последний узел

добавить узел после узла q

Поиск слова в списке

Задача:
найти в списке заданное слово или определить, что его нет.

Функция Find:

 вход: слово (символьная строка);

 выход: адрес узла, содержащего это слово или NULL.

Алгоритм: проход по списку.

18

PNode Find (PNode Head, char NewWord[])
{

 PNode q = Head;
 while (q && strcmp(q->word, NewWord))
 q = q->next;
 return q;

}

ищем это слово результат – адрес узла

пока не дошли до конца списка и слово
не равно заданному

Удаление узла списка

Проблема: нужно знать адрес узла перед удаляемым

19

void DeleteNode (PNode *Head, PNode p)
{

PNode q = *Head;

if (*Head == p)
 Head = &(p->next);
else {

 while (q && q->next != p)
 q = q->next;

 if (q == NULL) return;
 q->next = p->next;
 }
free(p);

}

q

Head

p

NULL

особый случай:
удаляем первый узел

ищем предыдущий
узел, такой что

q->next == p

освобождение памяти

PNode Head = NULL;
PNode Tail = NULL;

Двусвязные списки

20

Структура узла:

struct Node {
 char word[40]; // слово
 int count; // счетчик повторений
 Node *next; // ссылка на следующий элемент
 Node *prev; // ссылка на предыдущий элемент

};

typedef Node *PNode;

Указатель на эту структуру:

Адреса «головы» и «хвоста»:

next prev

можно двигаться в обе
стороны

нужно работать с двумя
указателями вместо одного

NULL NULL

Head Tail

Стек

Стек – это линейная структура данных, в которой
добавление и удаление элементов возможно только с
одного конца (вершины стека).

LIFO = Last In – First Out

 «Кто последним вошел, тот первым вышел».

Операции со стеком:

1) добавить элемент на вершину
(Push = втолкнуть);

2) снять элемент с вершины
(Pop = вытолкнуть).

 21

Стек: пример (1/2)

Задача: вводится символьная строка, в которой записано выражение со
скобками трех типов: [], {} и (). Определить, верно ли расставлены
скобки (не обращая внимания на остальные символы). Примеры:

 [()]{}][[({)]}

Задача: то же самое, но с одним видом скобок.
 Решение: счетчик вложенности скобок. Последовательность

правильная, если в конце счетчик равен нулю и при проходе не разу не
становился отрицательным.

22

 [({)] }

(: 0 1 0

[: 0 1 0

{: 0 1 0

[({)] }

(()) ()

1 2 1 0 1 0

(()) () (())) (

1 2 1 0 -1 0

(())) ((()) (

1 2 1 0 1

(()) (

Стек: пример (2/2)

Алгоритм:
1) в начале стек пуст;
2) в цикле просматриваем все символы строки по порядку;
3) если очередной символ – открывающая скобка, заносим ее на

вершину стека;
4) если символ – закрывающая скобка, проверяем вершину стека:

там должна быть соответствующая открывающая скобка (если
это не так, то ошибка);

5) если в конце стек не пуст, выражение неправильное.

 23

[(())] { }

[[

(

[

(

(

[

(

(

[

(

[{ {

Реализация стека (список)

Структура узла:

24

Добавление элемента:

struct Node {
 char data;
 Node *next;
};
typedef Node *PNode;

void Push (PNode *Head, char x)
{

 PNode NewNode = (PNode) malloc(sizeof(Node));;
 NewNode->data = x;
 NewNode->next = *Head;
 Head = &NewNode;

}

Реализация стека (список)

Извлечение элемента с вершины:

25

char Pop (PNode *Head) {
 char x;
 PNode q = *Head;
 if (Head == NULL) return char(255);
 x = (*Head)->data;
 *Head = (*Head)->next;
 free(q);
 return x;

}

стек пуст

Стек: пример (1/2)

Вычисление арифметических выражений

26
a b + c d + 1 - /

Инфиксная запись
(знак операции между операндами) (a + b) / (c + d – 1)

необходимы скобки

Постфиксная запись (знак операции после операндов)

польская нотация

скобки не нужны, можно однозначно вычислить

Префиксная запись (знак операции до операндов)

/ + a b - + c d 1

обратная польская нотация

a + b

a + b

c + d

c + d

c + d - 1

c + d - 1

Стек: пример (2/2)

Алгоритм:
1) взять очередной элемент;
2) если это не знак операции, добавить его в стек;
3) если это знак операции, то

 взять из стека два операнда;
 выполнить операцию и записать результат в стек;

4) перейти к шагу 1.

27

Постфиксная форма

a b + c d + 1 - /

a

b

a a+b

c

a+b

d

c

a+b

c+d

a+b

1

c+d

a+b

c+d-1

a+b X

X =

Очередь

Очередь – это линейная структура данных, в которой
добавление элементов возможно только с одного конца (конца
очереди), а удаление элементов – только с другого конца
(начала очереди).

FIFO = First In – First Out

• «Кто первым вошел,

• тот первым вышел».

Операции с очередью:

1) добавить элемент в конец очереди (PushTail =
втолкнуть в конец);

2) удалить элемент с начала очереди (Pop).

 28

1

2
3

4
5

6

Реализация очереди (массив)

29

1

1 2

1 2 3

1 2 3

самый простой способ

1) нужно заранее выделить массив;
2) при выборке из очереди нужно сдвигать все элементы.

Реализация очереди (списки)

Структура узла:

30

 struct Node {
 int data;
 Node *next;

 };

 typedef Node *PNode;

 struct Queue {

 PNode Head, Tail;

 };

Тип данных «очередь»:

Реализация очереди (списки)

Добавление элемента:

31

void PushTail (Queue *Q, int x)

{

 PNode NewNode;

 NewNode = (PNode)malloc(sizeof(Node));

 NewNode->data = x;

 NewNode->next = NULL;

 if ((*Q).Tail)

 (*Q).Tail->next = NewNode;

 (*Q).Tail = NewNode;

 if ((*Q).Head == NULL)
 (*Q).Head = (*Q).Tail;

}

создаем новый
узел

если в списке уже что-то
было, добавляем в конец

если в списке
ничего не было, …

Реализация очереди (списки)

Выборка элемента:

32

int Pop (Queue *Q)
{

 PNode top = (*Q).Head;
 int x;
 if (top == NULL)
 return 32767;
 x = top->data;
 (*Q).Head = top->next;
 if ((*Q).Head == NULL)
 (*Q).Tail = NULL;
 free(top);
 return x;

}

если список пуст, …

запомнили первый
элемент

если в списке
ничего не осталось

освободить память

Очередь с двумя концами (дек)

Дек (deque = double ended queue) – это линейная структура
данных, в которой добавление и удаление элементов
возможно с обоих концов.

33

Операции с деком:

1) добавление элемента в начало (Push);

2) удаление элемента с начала (Pop);

3) добавление элемента в конец (PushTail);

4) удаление элемента с конца (PopTail).

Реализация:

1) кольцевой массив;

2) двусвязный список.

1 2 3 4 5 6

Деревья

Дерево – это структура данных,
состоящая из узлов и соединяющих
их направленных ребер (дуг),
причем в каждый узел (кроме
корневого) ведет ровно одна дуга.

Корень – это начальный узел дерева.

Лист – это узел, из которого
не выходит ни одной дуги.

34

корень

2

8

5
6

9

1

3
4

10

7

директор

гл. инженер гл. бухгалтер

инженер

инженер

инженер

бухгалтер

бухгалтер

бухгалтер

Деревья

С помощью деревьев изображаются
отношения подчиненности
(иерархия, «старший – младший»,
«родитель – ребенок»).

35

Предок узла x – это узел, из которого существует путь по

стрелкам в узел x.

Потомок узла x – это узел, в который существует путь по

стрелкам из узла x.

Родитель узла x – это узел, из которого существует дуга

непосредственно в узел x.

2

4

6

1

3

5

Сын узла x – это узел, в который существует дуга непосредственно из узла x.

Брат узла x – это узел, у которого тот же родитель, что и у узла x.

Высота дерева – это наибольшее расстояние от корня до листа
(количество дуг).

Рекурсивное определение:
1. Пустая структура – это дерево.

2. Дерево – это корень и несколько
связанных с ним деревьев.

Двоичное (бинарное) дерево – это дерево,
в котором каждый узел имеет не более
двух сыновей.

1. Пустая структура – это двоичное дерево.

2. Двоичное дерево – это корень и два связанных с ним двоичных
дерева (левое и правое поддеревья).

Дерево – рекурсивная структура данных

36

2

4

6

1

3

5

Двоичные деревья

Применение:

1) поиск данных в специально построенных деревьях
(базы данных);

2) сортировка данных;

3) вычисление арифметических выражений

37

Структура узла:

struct Node {
 int data; // данные

 Node *left, *right; // ссылки на левого и правого сыновей

 };

typedef Node *PNode;

Двоичные деревья поиска

Ключ – это характеристика узла, по которой выполняется
поиск (чаще всего – одно из полей структуры).

38

16 45

30

76 125

98

59 Слева от каждого узла находятся
узлы с меньшими ключами, а
справа – с бóльшими.

Как искать ключ, равный x:
1) если дерево пустое, ключ не найден;

2) если ключ узла равен x, то стоп.

3) если ключ узла меньше x, то искать x в левом поддереве;

4) если ключ узла больше x, то искать x в правом поддереве.

Поиск в массиве (N элементов):

Двоичные деревья поиска

39

16 45

30

76 125

98

59

16 45 30 76 125 98 59

При каждом сравнении отбрасывается 1 элемент.

Число сравнений – N.

Поиск по дереву (N элементов):
При каждом сравнении отбрасывается
половина оставшихся элементов.

Число сравнений ~ log2N.

быстрый поиск

нужно заранее построить дерево

Реализация алгоритма поиска

40

дерево пустое:
ключ не нашли

нашли, возвращаем
адрес корня

искать в левом
поддереве

искать в правом
поддереве

// Функция Search – поиск по дереву
// Вход: Tree - адрес корня,
// x - искомый ключ
// Выход: адрес узла или NULL (не нашли)

PNode Search (PNode Tree, int x)
{

if (! Tree) return NULL;

if (x == Tree->data)
 return Tree;

if (x < Tree->data)
 return Search(Tree->left, x);
else
 return Search(Tree->right, x);

}

Построение дерева поиска

41

дерево пустое: создаем
новый узел (корень)

добавляем к левому или
правому поддереву

// Функция AddToTree – добавить элемент к дереву
// Вход: Tree - адрес корня,
// x - что добавляем
void AddToTree (PNode Tree, int x)
{

if (! Tree) {
 Tree = (PNode) malloc(sizeof(Node));
 Tree->data = x;
 Tree->left = NULL;
 Tree->right = NULL;
 return;
}
if (x < Tree->data)
 AddToTree (Tree->left, x);
else AddToTree (Tree->right, x);

}

Обход дерева

42

16 45

30

76 125

98

59
Обход дерева – просмотр всех узлов дерева в

определенном порядке.

Обход «левый–корень–правый»

125 98 76 45 59 30 16

Обход «правый – корень – левый»

16 30 45 76 59 98 125

Обход «корень – левый – правый»

125 76 98 16 45 30 59

Обход «левый – правый – корень»

59 98 125 30 76 45 16

Обход дерева – реализация

43

обход этой ветки закончен

обход левого поддерева

вывод данных корня

обход правого поддерева

 Для рекурсивной структуры удобно
 применять рекурсивную обработку

!

// Функция LRR – обход дерева в порядке
// “левый – корень – правый”
// Вход: Tree - адрес корня

void LRR(PNode Tree)

{

if (! Tree) return;

LRR (Tree->left);

printf ("%d ", Tree->data);

LRR (Tree->right);

}

Вычисление арифметических выражений

Задача: в символьной строке записано правильное
арифметическое выражение, которое может содержать
только однозначные числа и знаки операций +-*\.
Вычислить это выражение.

44

Алгоритм:
1) ввести строку;
2) построить дерево;
3) вычислить выражение по дереву.

a b

+

+ 1

-

/

c d

(a + b) / (c + d – 1)

Построение дерева

Алгоритм:
1) если first=last (остался один символ – число), то создать

новый узел и записать в него этот элемент; иначе...
2) среди элементов от first до last включительно найти

последнюю операцию с наименьшим приоритетом (элемент
с номером k);

3) создать новый узел (корень) и записать в него знак операции;
4) рекурсивно применить этот алгоритм два раза:

 построить левое поддерево, разобрав выражение из
элементов массива с номерами от first до k-1;

 построить правое поддерево, разобрав выражение из
элементов массива с номерами от k+1 до last.

45

5 + 7 * 6 - 3 * 2

first last k
k+1 k-1

Спасибо за внимание!

Валентина Глазкова

