
Программирование на языке 
Java. Часть 2.

Курс для самостоятельного 
изучения

Оригинальный текст: CS11 C++ Track © California 
Institute of Technology



Вторая часть?
• Предполагает, что вы уже:

– Знакомы с классами, модификаторами доступа, 
наследованием, вложенными классами

– Знакомы с исключениями и принципами обработки 
исключений

– Знакомы со Swing API и событиями AWT
– Понимаете принципы работы с классами коллекций 

Java
– Знакомы с хорошим стилем программирования, и 
правилами назначения имен в Java

• Основное внимание уделяется:
– Средствам автоматизации компиляции,  модульного 
тестирования, генераторам документации и т.п.



Большой проект на языке 
• Мы разработаем  
сетевой вариант игры в 
Боггл

• Боггл это игра в слова
– Поле клеток 4x4 с 
буквами
• “A” .. “Z” и “Qu”

– Игроки составляют из 
них слова
• Начинают с одной из 
клеток

• Ход делается в любом 



Большой проект на языке 
• В конце каждого раунда игроки сравнивают свои 
списки слов

• Если у нескольких игроков есть одинаковые слова, 
они удаляются у всех

• Игроки получают очки за слова которые нашли 
только они.

• Очки за слова назначаются в зависимости от из длины
• 3-4 буквы: 1 очко
• 5 букв: 2 очков
• 6 букв: 3 очков
• 7 букв: 5 очков
• 8+ букв: 11 очков



На этой неделе: разминка
• Создаем класс для работы со списком слов
• Каждое слово должно появляться в списке 
только один раз

• Нужны эффективные операции добавления/
удаления и проверки присутствия слова в списке

• Нужно реализовать несколько “операций над 
множеством”
– Добавление списка слов к другому списку слов 

(объединение множеств)
– Вычитание одного списка слов из другого (разность 
множеств)

• Нужно сделать загрузку списка слов из файла
– Словаря “известных разрешенных слов”



Создание списка слов
• В Java есть средства позволяющие 
упростить нашу задачу
– Операции со строками
– Классы коллекций
– Операции файлового ввода/вывода

• Используйте эти средства чтобы 
облегчить себе жизнь! 
– Ваш код в этом задании должен 
получиться довольно простым.



Коллекции Java
• В версии Java 1.2 появился очень 
мощный набор классов для управления 
коллекциями объектов

• Включает:
– Интерфейсы для разных типов коллекций
– Реализации интерфейсов с разными 
характеристиками

– Итераторы для перемещения по 
содержимому коллекций

• Очень полезны, но им далеко до 
мощности и гибкости C++ STL



Интерфейсы коллекций
• Базовая коллекция интерфейсов определена в 

java.util
– Определен основной функционал каждого типа 
коллекций

• Коллекция – базовый “контейнер объектов”
• Список – линейная последовательность элементов, 
адресуемых по индексу

• Очередь – линейная последовательность элементов 
“для обработки”
– Можно добавить элемент к очереди
– Можно “извлечь следующий элемент” из очереди
– Какой элемент считать “следующим” зависит от типа 
очереди

• Множество – коллекция с повторяющимися 



Еще интерфейсы коллекций
• Некоторые другие интерфейсы 
коллекций:
– SortedSet (расширение Set)
– SortedMap (расширение Map)
– Они гарантируют перечисление элементов в 
определенном порядке

• Элементы должны сравниваться
– Нужно уметь определять что элемент 

“меньше чем” или “больше чем” другой 
элемент

– Обеспечивает полное упорядочивание 



Общие операции над 
коллекциями

• Коллекции обычно поддерживают 
следующие операции:
– add(Object o) – добавляет элемент к коллекции
– remove(Object o) – удаляет объект
– clear() – удаляет все объекты коллекции
– size() – возвращает количество объектов в 
коллекции

– isEmpty() – возвращает true, если коллекция 
пуста

– iterator() – перемещает по содержимому 
коллекции



Реализации коллекций
• Каждый интерфейс имеет несколько 
реализаций
– Все имеют одинаковый набор базовых функций
– Разные способы хранения данных
– Разная производительность
– Иногда другие расширения

• Детали в документации Java API!
– В описании интерфейсов API Docs приводится 
список реализаций

– Читайте в API Docs подробности о 
производительности и особенностях хранения 



Реализации списков
• LinkedList – двунаправленный связный список

– Каждый элемент имеет ссылку на предыдущих и следующий 
элемент

– Время доступа к i-ому элементу равно O(N)
– Постоянное время добавления/вставки
– Элементы используют дополнительную память для хранения 
служебной информации (ссылки на предыдущий/следующий 
элементы и др.)

– Лучше использовать, если список часто меняется
– Имеют дополнительные функции для извлечения/удаления 
первого/последнего элементов

• ArrayList – хранит элементы в массиве
– Постоянное время доступа к i-ому элементуq
– Время добавления обычно постоянно
– Время вставки равно O(N)
– Лучше использовать для редко изменяющихся списков



Реализация множеств
• HashSet

– Элементы группируются в “корзины” по значению 
хэш кода

– Неименное время операций добавления/удаления
– Неизменное время  проверки  “на принадлежность”
– Элементы не хранятся в каком либо определенном 
порядке

– Для элементов должны вычисляться хэш функции
• TreeSet

– Элементы хранятся в отсортированном порядке
• Внутренне хранятся в сбалансированной древовидной 
структуре

– O(log(N))-время операций добавления/удаления



Реализация ассоциативных 
списков

• Очень похожи на множества
– Это ассоциативные контейнеры
– Ключи используются для доступа к значениям хранящимся 
в ассоциативном списке

– Каждый ключ уникален (появляется не более одного раза)
• (Коллекции Java не поддерживают мультимножества и 
ассоциативные списки с повторяющимися ключами)

• HashMap
– Ключи хэшируются
– Быстрый поиск, но случайный порядок расположения 
элементов

• TreeMap
– Ключи сортируются
– Поиск медленнее, но элементы хранятся в 
отсортированном порядке



Коллекции и объекты
• До версии Java 1.4, коллекции хранили только 
ссылки на тип Object
LinkedList points = new LinkedList();
points.add(new Point(3, 5));
Point p = (Point) points.get(0);

• Можно было добавить объект “не точку” в 
коллекцию точек!
– Извлечение такой “не точки” из коллекции могло 
привести к вызову исключения ClassCastException

• И к тому же, каждый раз делать преобразование 
типов надоедает
– Код по старому работающий с коллекциями был 
замусорен преобразованиями типов



Обобщенное 
программирование в Java 1.5 

• В Java 1.5 введено обобщенное 
программирование

• Указывается тип объектов хранящихся в 
коллекции:
LinkedList<Point> points =

 new LinkedList<Point>();
points.add(new Point(3, 5));
Point p = points.get(0);

• Компилятор разрешает добавлять в 
коллекцию точек только объекты типа  Point
– Если попытаться добавить объект другого типа, 
получим ошибку во время компиляции



Коллекции и обобщенное 
программирование

• Для списков и множеств это просто:
HashSet<String> wordList = new HashSet<String>();
LinkedList<Point> waypoints = new LinkedList<Point>();
– Тип элемента должен указываться при 
объявлении переменной и в выражении new

• Ассоциативные списки имеют более 
длинную запись:
TreeMap<String, WordDefinition> dictionary =

 new TreeMap<String, WordDefinition>();
– Сначала указывается тип ключа, затем тип 
значения



Перечисление элементов 
коллекций

• Часто требуется перебрать значения элементов 
коллекции

• Для ArrayList сделать это легко:
ArrayList<String> quotes;
...
for (int i = 0; i < quotes.size(); i++)
System.out.println(quotes.get(i));
– Но для других коллекций так сделать невозможно или не 
нужно!

• Для перемещения по содержимому коллекций 
используются итераторы

• Iterator это еще один простой интерфейс:
– hasNext() – возвращает true если можно вызвать next()
– next() – возвращает следующий элемент коллекции



Использование итераторов
• У коллекций есть метод iterator()

– Возвращает итератор для перечисления элементов 
коллекции

• Пример:
HashSet<Player> players;
...
Iterator<Player> iter = players.iterator();
while (iter.hasNext()) {
Player p = iter.next();
... // Делаем что то с p
}

• Итератор может использовать обобщенное 
программирование

• Итераторы можно использовать для удаления 



Расширенный синтаксис цикла 
for в Java 1.5

• Настройка и использование итераторов довольно скучное 
занятие

• В Java 1.5 для этой цели добавлен упрощенный синтаксис:
for (Player p : players) {

 ... // Делаем что то с p
}
– Итератор не доступен в цикле
– Хорошо подходит для простого перебора элементов коллекции

• Этот синтаксис можно использовать для перебора 
элементов массива:
float sum(float[] values) {

 float result = 0.0f;

 for (float val : values)

 result += val;

 return result;
}



Элементы коллекций
• Элементы коллекций иногда должны иметь 
определенный набор свойств

• От элементов List не требуется ничего 
особенного

•  
 …если не используются методы contains(), 
remove(), и т.п.!
– Тогда элементы должны иметь корректную 
реализацию метода equals()

• Требования к equals():
– a.equals(a) возвращает true
– a.equals(b) равно b.equals(a)
– Если a.equals(b) равно true и b.equals(c) равно true, 
тогда a.equals(c) также равно true



Элементы множеств, ключи 
ассоциативных списков

• Элементы множеств и ассоциативных списков 
должны иметь особенные свойства
– Множествам нужно производить эти операции над 
элементами а ассоциативным спискам над ключами

• метод equals() должен работать правильно
• Классам TreeSet, TreeMap нужна сортировка

– Элемент или ключ должен содержать реализацию 
интерфейса java.lang.Comparable

– Или подходящую реализацию java.util.Comparator
• Классам HashSet, HashMap нужен расчет 
значения хэша
– Элементы или ключи должны иметь реализацию 
метода Object.hashCode()



Применение обобщенного 
программирования

• Вы написали такой код:
// Функция для печати содержимого списка
void printList(List<Object> lst) {

 for (Object o : lst)

 System.out.print(" " + o);
}
List<Point> points = new LinkedList<Point>();
... // Заполняем список точками.
printList(points);

• Будет ли этот код работать?



Применение обобщенного 
программирования (2)

• Если этот  код работает, printList() может 
добавить к списку точек любой объект!
// Функция для печати содержимого списка
void printList(List<Object> lst) {
for (Object o : lst)
System.out.print(" " + o);
}
List<Point> points = new LinkedList<Point>();
... // Заполняем список точками.
printList(points);

• К счастью откомпилировать это в Java не 
получиться. 



Ввод/вывод в Java
• java.io package содержит классы для чтения 
и записи данных
– Файловый ввод/вывод – чтение/запись файлов в 
файловой системе

– Аппаратный ввод/вывод – сетевые сокеты, 
последовательные порты, другие внешние 
устройства

• Второй пакет добавлен в версии Java 1.4
– java.nio, для расширения операций ввода/
вывода

– Примеры:
• Отображение части файла в память для увеличения 
производительности чтения/записи



Базовые операции ввода/
вывода в Java

• В java.io package есть два основных типа 
операций ввода/вывода

• Чтение и запись потоков байтов:
– InputStream, OutputStream, и (много) дочерних 
классов

– Подходят для чтения/записи данных “без 
структуры”

• Чтение и запись потоков символов:
– Reader, Writer, и дочерние классы
– Подходят для чтения/записи текста, особенно 
локализованного

• Потоки ввода/вывода и классы чтения/записи 
это абстрактные классы



Операции входного потока
• Входной поток и базовый 
класс чтения имеют 
набор основных 
операций

int read()
• Читает один байт
int read(byte[] b)
• Читает массив байтов
int available()
• Определяет какое 
количество байтов можно 
считать без блокировки

long skip(long n)
• Пропускает и удаляет, n 

void mark(int rdlimit)
• Запоминает “текущую 
позицию” в потоке

void reset()
• Устанавливает позицию 
потока в последнюю 
отмеченную позицию

void close()
• Закрывает входной поток
Класс чтения почти 
идентичен,

но считывает символы 
вместо байтов

Не все потоки имеют эти 



Операции выходного 
• Выходной поток гораздо проще:
void write(int b)

– Пишет один байт
void write(byte[] b)

– Пишет массив байтов
void flush()

– Сохраняет/передает все байты из буфера потока
void close()

– Закрывает выходной поток
• Классы Write имеют сходный функционал

– Эти классы работают с символами а не с байтами
– И имеют несколько дополнительных методов для 



Общий подход к 
использованию ввода/вывода в 
1. Получаем входной или выходной поток источника 

или получателя данных
// filePath это путь и имя заданного файла
FileInputStream fis = new FileInputStream(filePath);

2. Если нужно добавить дополнительные функции, 
заворачиваем поток в другой поток
// Добавляем буферизацию потому что чтение по байтам менее
// эффективно
BufferedInputStream bis =

 new BufferedInputStream(fis);

3. Используем самый “внешний” поток для операций 
ввода/вывода.
// Читаем данные из входного файла.
byte[] buf = new byte[1024];



Некоторые полезные классы 
потоков

• java.io.FileInputStream и FileOutputStream 
для чтения и записи файлов данных

• java.net.Socket имеет методы 
getInputStream() и getOutputStream()

• Пакет java.util.zip включает библиотеки для 
сжатия
– Можно открыть входной или выходной поток, 
напримр,  к отдельной записи в.zip файле.

• java.io.ByteArrayInputStream и 
ByteArrayOutputStream
– Поддерживают потоковые операции для 



Потоки и классы чтения
• Большинство реализаций потоков ввода/
вывода не имеют классов чтения/записи

• Два класса нужно конвертировать в классы 
чтения/записи:
– java.io.InputStreamReader

• В параметре конструктора передается объект 
InputStream

– java.io.OutputStreamWriter
• В параметре конструктора передается объект  

OutputStream
• Очень полезны, для чтения/записи текста в/
из потоков ввода/вывода



Файловый ввод/вывод в Java
• Есть несколько способов задать файл или каталог

– Строкой содержащей путь к файлу/каталогу
– Объектом java.io.File

• Есть много полезных свойств!
• Можно преобразовать относительный путь в абсолютный и 
наоборот

• Получить объекты File  всех корневых каталогов файловой 
системы

• Проверить, что файл существует, доступен ли он на чтение или 
запись и пр.

• В Java есть классы для того чтобы открыть потоки 
файлового ввода/вывода и открытия классов чтения 
из/записи в файлы
– Они облегчают работу с двоичными и текстовыми 
файлами

– Эти объекты понимают строковые пути или объекты File



Документация API
• Документирование кода очень важно

– Указывайте требования и ожидаемое поведение 
кода

– Записывайте проектные решения в коде
– Любые важные подробности использования, 
ошибочные условия, и т.п.

• Лучше всего вставлять эту документацию прямо 
в код
– Хорошая практика комментирования…
– Легче обновлять если все находится в одном месте

• Автоматические средства документирования 
могут обрабатывать ваш исходный код и 
создавать полезную/аккуратную документацию 



Javadoc!
• Sun включает инструмент javadoc в Java 

Developer Kit
• javadoc обрабатывает файлы исходного кода

– Комментарии начинающиеся с /** называются 
комментариями javadoc

– Должны стоять перед классами, полями, методами, 
и пр.

– Комментарии внутри методов игнорируются.
• Пример:

/**
* Класс представляющий космический корабль игрока.
*/
public class PlayerShip {



Комментарии Javadoc
• Javadoc генерирует “краткие” комментарии и 

“подробные” комментарии
• Краткий комментарий эт первое предложение 
комментария javadoc
– Используется в списках классов, методов, полей и 
пр.

• Подробные комментарии это комментарии 
полностью
– Используются в документации класса, метода, поля, 
и пр.

• Учтите это при составлении первого 
предложения!
– Короткое сообщение, содержащее главные детали.



Тэги javadoc!
• Комментарии javadoc cмогут содержать тэги
• Ссылки на другие относящиеся к делу 
классы

• Привязывают замечания к элементам 
описания

• Формат тэга @tag, или {@inlinetag}
• Пример:

/**
* Класс представляющий космический корабль игрока.
*
* @author Donnie Pinkston
* @version 1.0



Применение тэгов javadoc
• Различные теги должны использоваться в разных 
местах

• С классами и интерфейсами можно использовать:
– @author – автор класса/интерфейса
– @version – текущая версия

• С конструкторами и методами можно использовать:
– @param – описывает параметры
– @return – описывает возвращаемое значение
– @throws – какие исключения вызываются и в каких 
случаях

• Везде можно использовать:
– @see – ссылка на другой класс, интерфейс, метод, и пр.
– @since – версия в которой введена эта вещь



Ссылки на другие классы и 
• Тэг @see позволяет вставить ссылку на 
другой класс и пр.

• Ссылка на другой класс:
@see TargetZone

• Ссылка на поле или метод в другом классе:
@see TargetZone#loc
@see TargetZone#intersects(PlayerShip)

• Ссылка на поле или метод в этом классе:
@see #dirAngle
@see #turnLeft()

• В комментарий можно вставить тэг {@link ...}



Запуск Javadoc
• javadoc можно запустить из командной 
строки
javadoc -d docs *.java

• Ключ -d указывает, куда поместить 
результаты
– Можно указать относительный или абсолютный 
путь

– Каталог создается автоматически
– По умолчанию используется текущий каталог! 
Ой!

– Точка входа документации API - файл 



Задание на эту неделю
• Напишите базовый класс для хранения 
списков слов
– Сделайте все операции необходимые для игры 
в Боггл

– Добавьте возможность загрузки списков слов из 
фала

– Напишите простой тестовый класс для 
проверки своего кода

• Закомментируйте свой код!
– Используйте комментарии javadoc
– Запустите javadoc для создания документации



На следующей неделе
• Добавление мета-даных к классам и 
методам с помощью аннотаций Java

• Создание пакетов 
автоматизированных тестов для ваши 
классов


