
Программирование на языке
Java. Часть 2.

Курс для самостоятельного
изучения

Оригинальный текст: CS11 C++ Track © California
Institute of Technology

Темы на сегодня
• Утверждения
• Аннотации Java 1.5
• Classpath
• Модульное тестирование!
• Подсказки для второго задания 

Утверждения!
• Утверждения это очень полезное свойство языка
• Дает два важных преимущества
• Может проверять предположения которые
делает ваш код
– Добавляет в код директивы проверяющие ваши
допущения

– Утверждения проверяются во время исполнения
– Если утверждения нарушается программа
завершается с ошибкой

• Утверждения также документируют ваши
допущения
– Как и в случае javadoc, код сам определяет
собственные допущения

Утверждения в Java
• В версии Java 1.4 добавлено ключевое слово assert

assert result >= 0;
– Результатом вычисления условия должно быть логическое
значение

– Скобки вокруг условия не требуются
• Если условие равно false во время исполнения
выдается исключение java.lang.AssertionError
– AssertionError расположено в ветке Error иерархии
исключений Java
• Так как это исключение, оно включает трассировку стека в
место где оно произошло

– Из документации Java API по java.lang.Error:
• Error это дочерний класс Throwable, который указывает на
серьезную проблему, которую приложение не должно
перехватывать

Утверждения в Java (2)
• Простой синтаксис assert:

assert cond;
– cond должно вычисляться в значение типа boolean

• Можно указать дополнительные детали когда
происходит сбой:
assert cond : expr;

• expr должно возвращать какой либо результат
• т.е. не может быть функцией void
• expr вычисляется только если условие cond равно

false
• Детали ошибки должны указывать что пошло
неправильно

• Облегчает отладку программного обеспечения!

Отключение утверждений
• Иногда проверка исключений потребляет много ресурсов

– Пример: класс который сортирует свое содержимое
public class Sorter {

 public boolean inOrder() {

 ... // перечисление элементов для проверки

 }

 public void sort() {

 ... // Делаем здесь что то волшебное

 assert inOrder() : «Сортировка не сработала!";

 }
}

• В Java утверждения во время исполнения можно включать/
отключать
– Применение утверждений в классе фиксируется во время его
загрузки

Отключение утверждений
• Аргументы виртуальной машины Java для
утверждений:
– -enableassertions (или -ea)

• Включает утверждения во всех классах кроме системных
– -disableassertions (или -da)

• Выключает утверждения во всех классах кроме системных
• Примеры:
• -ea package.ClassName или -da package.ClassName

• Включает/выключает утверждения в указанном классе
– -ea package... или -da package...

• Включает/выключает все утверждения во всех классах пакета
• Для включения/выключения утверждений в
системных классах:
– -enablesystemassertions or -esa

Правила применения
утверждений

• Не используйте утверждения Java для проверки
аргументов публичных API!

• Стандартное решение в Java это использование
исключений для информирования о неправильных
аргументах

• Небольшой набор примеров из Java API:
– NullPointerException

• Для обязательного аргумента ссылочного типа указано
значение null

– IndexOutOfBoundsException
• Значение аргумента индекса за пределами допустимого
диапазона

– NumberFormatException
• Стоковое представление числа имеет неверный формат

– IllegalArgumentException

Правила применения
утверждений (2)

• Не помещайте необходимый для работы
код внутрь тестов утверждений!
assert set.remove(obj) : "obj не найден: " + obj;
– Проблема?

• Когда утверждения отключены этот код не
выполняется!

• Есть множество правил и рекомендаций по
использованию утверждений в Java Many
more guidelines for assertions in Java
– Дополнительную информацию можно найти в
разделе “Programming with Assertions”
http://java.sun.com/javase/6/docs/technotes/

guides/language/assert.html

Соглашения о назначении
• Обычно классы используются в Java так:

– Классы создаются для какой либо программной оболочки
– Часто имя класса должно удовлетворять некоторым
принятым соглашениям
• Оболочка может обращаться к методам или полям класса
• Внешние средства проектирования могут разбирать код класса
и находить в нем методы и поля

• Пример: каркасы веб-приложений J2EE
– Enterprise JavaBeans (EJB) инкапсулирует логику веб-
приложения

– EJB должен содержать реализацию определенных
интерфейсов, и методов, должны использоваться
определенные соглашения при назначении имен

– Если эти правила нарушаются, J2EE сервер перестает
правильно работать.

Аннотации Java
• В версии 1.5 предложено простое решение:

– К классам их полям и методам добавляются
аннотации (т.е. метаданные)

• Аннотации можно извлечь с помощью
внешних инструментов
– Вместо поиска методов с указанными именами
или сигнатурой, можно извлечь все методы с
заданной аннотацией

• Аннотации используются компилятором Java
и ВМ
– Примеры:

• “этот метод устарел”
• “этот метод реализует метод интерфейса”

Аннотации Java (2)
• Аннотации как классы
• Они имеют определенный тип
• Они могут содержать поля для хранения деталей
аннотации

• Спецификация аннотации включает:
• Где она может появиться (т.е. только в классе, или
только в методе)

• Политика хранения: где и когда они доступны
• Аннотации “исходного кода” – только во время
компиляции

• Аннотации “класса” –включаются в
откомпилированный class файл, но JVM может убрать
их во время загрузки

Простой пример
• Пишем класс двумерной точки

public class Point2d {

 private double xCoord, yCoord;

 public boolean equals(Point2d obj) {

 ... // Реализация метода equals

 }
}

• Проблемы?
– Неправильное объявление equals()!
– Аргумент должен иметь тип Object

• Компилятор не сообщает об этой проблеме!
– Списки могут неправильно работать с этим кодом.

Теперь с аннотациями
• Java имеет несколько полезных аннотаций

– @Override – Метод переопределяет метод родительского
класса

• Меняем код:
public class Point2d {

 private double xCoord, yCoord;

 @Override

 public boolean equals(Point2d obj) {

 ... // Реализация equals

 }
}

• Так как мы неправильно определили equals() , эта
функция не переопределяет Object.equals()
– Компилятор сообщает об ошибке, и теперь можно ее
исправить.

Другие подробности про
аннотации

• Вы можете создавать собственные
аннотации!
– Создавать собственные средства обработки
классов

– Различные инструменты и оболочки имеют
собственные аннотации, которые можно
использовать в вашем коде

• Документация по аннотациям Java
http://java.sun.com/javase/6/docs/technotes/guides/language/

annotations.html

Classpath
• Если Java программа ссылается на класс его
определение надо откуда то взять
import javax.vecmath.Vector3f;
...
Vector3f v = new Vector3f(1.0f, 0.0f, 0.0f);
– Когда код компилируется, javac должен найти
определение класса javax.vecmath.Vector3f

– Когда код запускается, JVM тоже должна найти это
определение

• classpath сообщает Java где искать определения
классов
– По умолчанию classpath указывает на текущий
каталог “.”

– (Системные классы Java ищутся другим способом…)

Как задать Сlasspath
• Classpath нужно указывать, когда вы используете
внешние библиотеки
– javax.vecmath.Vector3f находится в библиотеке Java3D
– Не в стандартной библиотеке Java API, и не в нашем
локальном каталоге!

• Есть два способа:
– Используйте ключ -classpath (или -cp) в командной
строке javac и java

– Задайте переменную среды окружения CLASSPATH
• Значение этой переменной содержит пути

– Разделители фалов и каталогов зависят от используемой
ОС!

– Windows:
 -cp C:\path\one;C:\path\two
– Linux/Mac:
 -cp /path/one:/path/two

Как задать Сlasspath (2)
• classpath может содержать:
– Путь к каталогу, если каталог
содержит.class файлы

– Путь к JAR файлу
• JAR файлы это файлы архивы классов Java; JAR =

Java ARchive
• Еще о JAR файлах поговорим позднее
• (Если интересно, см. документацию и утилиту

jar)
• Classpath не может просто указывать на

Пример classpath
• Если наш класс Vector3f определен в

vecmath.jar
– Если vecmath.jar в том же каталоге:

• javac –cp vecmath.jar MyClass.java
– Если vecmath.jar находится где то еще:

• javac –cp /path/to/vecmath.jar MyClass.java
– Запуск кода выглядит примерно так же:

• java –cp /path/to/vecmath.jar MyClass
• Задание classpath удаляет текущий каталог
из пути
– В некоторых случаях надо делать так:

Проверка списка слов
• На прошлой неделе вы сделали класс для
списка слов
– Написали для него простой тест
– Осталось много непроверенного функционала!

• Нужно создать набор тестов для проверки
класса
– Каждый тест проверяет одно из свойств класса
– Если тест не выполняется, нужно определить и
устранить проблему

• Модульное тестирование:
– Проверяет наименьшие доступные для
проверки модули программы

Цели модульного
• В идеальном случае, набор тестов должен исполнять
весь ваш код
– Каждый путь кода внутри программы
– Тесты, которые проверяют нормальное поведение
– Тесты, которые проверяют обработку ошибок тоже!

• Называются “негативные тесты”
• Проверьте что в случае ошибок вызываются нужные исключения
• Проверьте что программа не завершается неправильным
состоянием

• Проверьте, что программа освобождает все выделенные ей
ресурсы

• Средство расчета покрытия кода вычисляет сколько
кода исполняется набором тестов
– Есть разные меры покрытия кода
– Часто требуется 100% покрытие кода

Цели модульного тестирования
(2)

• Модульное тестирование пытается изолировать
каждый класс и в идеале каждый метод
– Облегчает поиск и устранение ошибок

• Классы часто содержат ссылки на другие
классы…
– Часто бывает трудно протестировать один класс
отдельно от других

• Модульное тестирование мотивирует отделение
интерфейса от реализации
– Классы взаимодействуют друг с другом через
хорошо определенные интерфейсы

– Набор тестов обеспечивает реализации-заглушки
для тестируемого класса

Ограничения модульного
тестирования

• Модульное тестирование это простой способ
улучшить качество программного обеспечения
– Нет никаких оправданий для того чтобы не делать
модульное тестирование для вашего программного
обеспечения

• Проверяет только отдельные модули…
– Могут остаться проблемы большого масштаба,
несовместимости и пр..

• Интеграционное тестирование:
– Отдельные компоненты и модули комбинируются и
проверяются в группе

– Обычно начинается после завершения модульного
тестирования

• Системное тестирование:
– Все программное обеспечение тестируется и проверяется

Регрессионное
• Еще одна важная методология тестирования о которой
следует знать, это регрессионное тестирование

• Сценарий:
– Вы работаете над программным проектом у которого есть набор
тестов

– Делаете изменения в проекте …
– Внезапно появляются несколько ошибок в тестах которые раньше
выполнялись!

• Это называется регрессией
– Вы портите свойство, которое работало раньше (чаще всего)
– Вы добавили код со скрытой ошибкой (реже)

• Очень важно предотвратить регрессию!
– Особенно важно когда ошибки исправляются на работающем
программном обеспечении

– Клиенту нужен релиз без ошибок, который делает их жизнь
лучше, а не хуже.

Регрессионное
• Два основных подхода к определению и
предотвращению регрессии!

• Первый подход:
– Когда добавите новое свойство или исправите
ошибку, запустите полный набор тестов
программного обеспечения

– Если ваш набор тестов полный, он быстро
обнаружит любую регрессию вызванную
сделанными изменениями

• Второй подход:
– Когда найдена новая ошибка, напишите отдельный
тест для ее проверки

• Хорошие компании разработчики программного
обеспечения применяют оба подхода в своих

Библиотеки модульного
тестирования в Java

• Легче всего управлять тестированием можно с
помощью библиотеки тестирования
– Каждый модульный тест создается как отельный метод
– Тесты можно группировать в разные категории

• например “дымовые тесты (так называются тесты на явные
ошибки),” “регрессионные тесты,” “длинные тесты”

– Запуск групп тестов из общей точки входа
– Просмотр результатов в удобном и понятном виде

• В Java есть две хорошо известные библиотеки
– JUnit (http://www.junit.org)

• Более старая и хорошо отлаженная, но с некоторыми важными
ограничениями

– TestNG (http://testng.org)
• Новая альтернатива созданная для того, чтобы устранить
недостатки JUnit

JUnit vs. TestNG
• JUnit в первую очередь сосредоточена на
модульном тестировании
– Прекрасно выполняет простое модульное
тестирование

– Но не так хорошо подходит для интеграционного
тестирования или других продвинутых методов
тестирования

• TestNG разработана для проведения различных
видов тестирования
– Поддерживается модульное и интеграционное
тестирование

– Можно задать зависимости между тестами
• Интеграционное тестирование может состоять из
нескольких шагов

Тестирование и аннотации
• Старых подход в JUnit 3.x:
– В тестовом классе делаются тестовые
методы
• Имя метода должно начинаться с “test”
• Сигнатура метода: нет аргументов, нет
возвращаемого значения

• Метод должен иметь модификатор public, и не
может быть статическим.

• Подход в JUnit 4 и TestNG:
– Тестовые методы имеют аннотацию @Test
– Других требований для тестовых методов
нет

Простой пример TestNG
• Простой тестовый класс для проверки списка слов:

import org.testng.annotations.*;
public class TestWordList {

 /** Проверка конструктора по умолчанию WordList. */

 @Test

 public void testDefaultCtor() {

 WordList wl = new WordList();

 assert wl.size() == 0;

 // Проверяем что внутреннее множество

 // инициализировано.

 assert !wl.contains("random");

 }
}

• Добавляем другие методы отмеченные аннотацией
@Test.

Компиляция тестов
• Компилятор Java должен знать о JAR-
файле TestNG
– Он содержит, в частности, аннотации

TestNG
• Пример командная строка *nix:

javac –cp .:testng-5.8-java15.jar

 TestWordList.java

•
 …предполагаем6 что все файлы
включая TestNG JAR, в текущем

Запуск тестов
• TestNG имеет конфигурационный XML
файл

• testng.xml
• Подробности есть на веб сайте TestNG
• Для начала, просто задайте имя
тестового класса в командной строке
java –cp .:testng-5.8-java15.jar org.testng.TestNG \

 –testclasses TestWordList

• Ели классов несколько, отделяйте имена
пробелами

Группировка тестов
• Для каждого теста можно задать одну или несколько групп

/** Проверка конструктора по умолчанию WordList. */
@Test(groups = {"basic"})
public void testDefaultCtor() {

 WordList wl = new WordList();

 assert wl.size() == 0;

 // Проверяем, что внутренне множество проинициализировано.

 assert !wl.contains("random");
}

• groups это массив строк
• Можно задать несколько групп:

@Test(groups = {"basic", "fileio"})
• Для запуска тестов из одной или нескольких групп:

java ... org.testng.TestNG ... –groups basic fileio

Негативные тесты
• Тесты должны также проверять обработчики ошибок

– Методы Java сообщают об ошибках вызывая исключения
• Создадим тест для проверки того, что конструктор

WordList вызывает исключение если указать
недопустимое имя файл
/** Проверка поведения при отсутствии файла. */
@Test(groups={"fileio"},
expectedExceptions={IOException.class})
public void testMissingFile() {

 File f = new File("missing.txt");

 assert !f.exists();

 WordList wl = new WordList(f);
}
– Тест считается невыполненным, если не вызвано
исключение или вызвано исключение другого типа

Задание на эту неделю
• Создать класс BoggleBoard для хранения
состояния доски
– Добавить поддержку досок NхN (не только

4x4)
– Заполнить доску строками содержащими

A..Z, или Вопрос: как генерировать
случайные буквы?

• В Java для генерации случайных чисел
есть класс java.util.Random
– У него много разных методов!
– public int nextInt(int n)

Генерация случайных букв
• Можно генерировать случайные числа в
диапазоне [0, 26)
– Как преобразовать их в буквы алфавита?

• Несколько идей:
– Заполните ArrayList<Character> значениями всех

26-ти символов
• Используйте случайные числа как индексы для
перестановки элементов коллекции

– Вычислите значение напрямую:

 char ch = (char) (65 + rand.nextInt(26));

• Что такое 65?!

 char ch = (char) ('A' + rand.nextInt(26));

• Всегда используйте символы вместо числового кода!

Генерация случайных букв
• Зачем вставлять преобразование в
символ за пределами выражения?
char ch = (char) ('A' + rand.nextInt(26));
– Что не так с:
char ch = 'A' + (char) rand.nextInt(26);

• В Java, результат + должен быть:
– double, float, long или int
– В нашем случае: char + char = int

Правила преобразования типов
арифметических операций в

• Из спецификации языка Java, раздел 5.6.2:
– Если один из операторов имеет тип double,
другой преобразуется в double.

– Иначе, если один из операторов имеет тип
float, другой преобразуется в float.

– Иначе, если один оператор имеет тип long,
другой преобразуется в long.

– Иначе, ода оператора преобразуются в int.
• Эти правила в частности применяются для
арифметических операторов Java
– Помните о них, когда пишите выражения
включающие разные типы данных…

Задание на эту неделю (2)
• Кроме создания класса доски Боггл,
нужно также сделать набор тестов для
вашего кода
– Для класса WordList, создайте класс

TestWordList
– Для BoggleBoard, создайте TestBoggleBoard

• Используйте аннотации TestNG для
запуска своих тестовn

• Ваш набор тестов должен быть полным!

