
Программирование на языке Java.
Часть 2.

Лекция 3

Курс для самостоятельного
изучения

Оригинальный текст: CS11 C++ Track © California Institute of
Technology

Константы Java

• Часто в коде на языке Java требуется объявить константу
public class BoggleBoard {
 /** Размер доски Боггл по умолчанию. */
 public static final int DEFAULT_SIZE = 4;
 ...
}
• Стандартные соглашения для констант Java:

– Имя задается по схеме ALL_CAPS (слова из заглавных букв
разделенные подчеркиванием)

– Используются модификаторы доступа public static final
– (или, если нужно private / protected)

Ключевое слово static

• Члены класса можно объявить статическими
• Они относятся к классу, а не к определенному объекту
• Статические поля имеют только одну копию значения
• Пример:
public class CommandPrompt {
 public static final String PROMPT =
 "Введите команду: ";
 ...
}

• PROMPT это объект, но он не принадлежит какому либо экземпляру
класса CommandPrompt

• Есть только одно значение, и весь код совместно использует это
единственное значение

• Память используется более эффективно чем в случае, если хранить
значения в полях экземпляров класса

Инициализация статических полей

• Когда инициализируются статические поля?
public class CommandPrompt {
 public static final String PROMPT =
 "Введите команду: ";
 ...
}
• ВМ инициализирует класс когда тип первый раз используется в коде.

– Определение класса находится через classpath, и затем проверяется
• т.е. проверяется, что все инструкции правильные; инструкции перехода указывают

на правильные адреса и т.п.

– Любая ссылка на другой тип может быть проверена и создана
• (для этого может потребоваться. конечно, загрузка дополнительных классов)

– Наконец, инициализируются статические поля класса

Инициализация статических полей
(2)

• Статические поля инициализируются в конце процесса
загрузки класса

• Иногда, невозможно проинициализировать статическое
поле одной строкой кода

public class NoiseGenerator {
 public static final Vector3f[] noiseVectors =
 new Vector3f[1024];
 ...
}

– Нужно также проинициализировать вектор отсчетов шума
случайными значениями

– Конечно это нельзя сделать одной строкой!

• Как надо проинициализировать это статическое поле?

Инициализация статических полей
(3)

• Классы могут иметь статические инициализаторы:
public class NoiseGenerator {
 public static final Vector3f[] noiseVectors =
 new Vector3f[1024];
 static {
 for (int i = 0; i < noiseVectors.length; i++) {
 noiseVectors[i] = new Vector3f();
 ... // Инициализация вектора
 }
 }
 ...
}

• Статические инициализаторы не могут генерировать проверяемые
исключения!

• Инициализация статических полей, и исполнение инициализаторов
производится в порядки расположения в файле исходного кода

• Инициализация статических полей из нескольких потоков автоматически
синхронизируется

Ключевое слово final

• Переменные Java могут быть объявлены final
– Значение такой переменной можно присвоить только один раз.

• Часто используется для полей-констант классов и экземпляров
public class CommandPrompt {
 public static final String PROMPT =
 "Введите команду: ";
 ...
}

– PROMPT можно изменить только раз и это значение остается навсегда

• Поля final обычно получают значение прямо там где объявляются, но
в Java так делать не обязательно!
– final поля экземпляра должны получить значение до завершения кода

конструктора
– Статические final поля (поля класса) должны инициализироваться

статическим инициализатором

Ключевое слово final (2)

• Иногда final используется с локальными переменными и аргументами
методов
– Запрещает переприсвоение значений переменным которые не должны изменяться
– Используется для снижения вероятности появления ошибок
– Польза этой технологии не всегда очевидна… 

• Пример:
int findWord(String w, final ArrayList<String> words) {
 int i = 0;
 for (String s : words) {
 if (s.equals(w)) return i;
 i++;
 }
 return -1;
}

• Что можно сделать со словами?
– Слово не может ссылаться а что то еще
– Увеличиваем корректность нашего метода (слегка)

Ключевое слово final (3)

• Пример:
int findWord(String w, final ArrayList<String> words) {
 int i = 0;
 for (String s : words) {
 if (s.equals(w)) return i;
 i++;
 }
 return -1;
}

• Что можно сделать со словами?
– Мы можем вызывать разные методы для слов…
– Мы можем вызывать мутаторы для слов!

• words.add("yo' mama!");
• words.clear();

• final всего лишь запрещает повторное присвоение значений переменной
• Объявление переменной final не так уж много дает…

final и const

• Ключевое слово final в Java не похоже на const в C++
– (и в Java нет эквивалента C++ const)

• Вы возможно видели проекты, в которых использовалось final для
аргументов методов и локальных переменных…
– Надо иметь ввиду ограниченность этой технологии

• Если вам действительно нужно запретить изменения:
• Создайте класс без мутаторов!

– (добавьте если нужно, дочерний класс с мутаторами)
– Классы Java String, Integer, и т.п. все неизменяемые

• Или воспользуйтесь Collections.unmodifiableList(List), и пр.
– Обеспечивает просмотр без возможности изменения других коллекций
– Исходная коллекция по прежнему может редактироваться, но методам

которые с ней работают можно передать ее неизменяемый вид

Вернемся к константам Java

• Стандартный набор модификаторов для констант
public class BoggleBoard {
/** Размер доски Боггл по умолчанию. **/
public static final int DEFAULT_SIZE = 4;
...
}

• Для простых констант это рекомендуемый набор
• Если константа объект, это повышает эффективность

использования памяти
• Есть еще два часто встречающихся способа

использования констант
– Оба не на столько хорошие 

Интерфейсы и константы

• Интерфейсы могут содержать публичные методы и константы!
– Константы достаточно объявить static final, так как все члены

интерфейса автоматически имеют модификатор public

• Когда в пакете используется констант их обычно помещают в
отдельный “интерфейс констант”
– В таком интерфейсе есть только константы, а методы отсутствуют

• В Java API есть много таких примеров
– Интерфейс javax.swing.SwingConstants

• Содержит константы выравнивания LEFT, CENTER, RIGHT

• Многие классы Swing “реализуют” SwingConstants, поэтому они
могут использовать эти константы в своих реализациях
– При этом не нужно добавлять методы; у SwingConstants их нет!

Джошуа Блох и интерфейсы
констант

• Интерфейс это тип в Java
• Интерфейсы задают набор поведений, которые реализуются

объектами
• Если класс реализует интерфейс:

– интерфейс говорит о том, что клиенты класса могут делать с
объектами этого типа!

– Другой код может ссылаться на объект используя тип интерфйеса

• Интерфейсы констант нарушают этот принцип
– Т.е., SwingConstants вовсе не содержит описание поведения!
– Но мы можем, например, написать такой странный код:

SwingConstants c = new JButton("Это странно");

• Нельзя вызвать какой либо метод, потому что ни один не
объявлен!

Лучшее решение: служебные классы
констант

• Если вам надо собрать вместе большое
количество констант:
– Поместите их в служебный класс, и сделайте

экземпляр этого классаn
• Класс должен иметь private конструктор по умолчанию

– Сделайте для констант поля public static final

• Мораль:

• Если в Java API используются какие то приемы
программирования, это автоматически не
означает что вы должны им следовать. 

Простая нумерация

• Константы часто используются для нумерации элементов
/** Колода карт. */
public class Card {
public static final int SPADES = 1;
public static final int HEARTS = 2;
public static final int CLUBS = 3;
public static final int DIAMONDS = 4;
...
}

• Проблемы?
– Небезопасное использование типов:

public class Card {
...
void setSuit(int suit);
}

• Можно случайно перепутать номера, или указать недопустимое
значение!

Нумерация с безопасным
использованием типов

• Показанная выше нумерация повышает вероятность ошибок
• Лучше использовать: “нумерацию с безопасным использованием

типов”
– Создайте класс для перечисления
– Создайте уникальный объект для каждого перечисляемого значения
public class Suit {
/** Только Suit может вызвать свой конструктор. */
private Suit() { }
public static final Suit SPADES = new Suit();
public static final Suit HEARTS = new Suit();
public static final Suit CLUBS = new Suit();
public static final Suit DIAMONDS = new Suit();
}

• Можно добавить другие поля к перечисляемому значению, например,
name, id, и пр.

Нумерация с безопасным
использованием типов (2)

• “Нумерация с безопасным использованием типов” это очень
полезный прием, но он также требует много кода
– Главное что каждое из перечисляемых значений уникально в

виртуальной машине Javan

• С объектами нельзя использовать оператор switch:
Card c = ... ;
switch (c.getSuit()) {
 case Suit.SPADES:
 ...
}

– Этот код не будет компилироваться, если применяется подход с
безопасным использованием типов!

– Но будет компилироваться, если масти представлены целыми
числами, однако, как мы помним, этот вариант имеет большие
проблемы

Типы enum в Java 1.5

• В версии Java 1.5 введена поддержка перечисляемых типов
(enum)
– Правила использования очень простые …
– Реализация иногда бывает запутанной…
– и нам бы хотелось иметь поддержку языка (т.е. switch)

• Переделаем класс Suit так чтобы он поддерживал
перечисляемы типы:
public enum Suit {
SPADES,
HEARTS,
CLUBS,
DIAMONDS
}

• Комментарии Javadoc можно добавлять к типу и каждому
элементу перечисления

Типы enum в Java 1.5 (2)

• Оператор switch можно использовать с перечисляемыми типами:
Card c = ... ;
switch (c.getSuit()) {
 case SPADES:

...

}

• Перечисляемые типы в Java получают автоматически метод toString()
и другие полезные методы класса Object
System.out.println(c.getSuit());
→SPADES

• К значениям перечисляемого типа можно обращаться как к
элементам массива
for (int val = 1; val <= 13; val++)
 for (Suit s : Suit.values)
 deck.add(new Card(val, s));

Расширение перечисляемых типов

• Перечисляемые типы Java это классы
– К перечисляемому типу можно добавить поля и методы

• Пример:
public enum ChessPiece {
 KING (200), // Произвольное значение для короля
 QUEEN (9),
 ROOK (5),
 BISHOP(3),
 KNIGHT(3),
 PAWN (1); // Обратите внимание на точку с запятой!
 private final int value; // Вес фигуры
 ChessPiece(int value) { this.value = value; }
 public int value() { return value; }
}

Вложенная нумерация

• Перечисляемый тип можно объявить внутри другого
класса
public class Card {
 public enum Suit {
 SPADES, HEARTS, CLUBS, DIAMONDS
 }
 public Card(int value, Suit suit) {
 ...
 }
}

• Код класса Card может ссылаться на перечисляемые
значения так: Suit.SPADES, и т.п.

• Внешний код должен делать так: Card.Suit.SPADES, и т.п.

Задание на этой неделе

• Начинаем делать пользовательский интерфейс игры
Боггл
– Начинаем с класса который рисует доску Боггл и

позволяет иголкам вводить найденные ими слова

• Пользователь должен иметь визуальные подсказки
– Используем большой легко читаемый шрифт

– Используем “активное” состояние и цвет рамки для
того чтобы указать какую букву можно выбрать на
следующем ходе

• Пользовательский интерфейс также должен иметь
метод возвращающий текущее выбранное слово

Пример пользовательского
интерфейса

• Поле игры Боггл состоит из
клеток (кнопок)

• По цвету рамок кнопок
можно определить, какие из
кнопок можно выбрать

• Когда игрок выбирает букву,
ее рамка становится красной

• Можно использовать, только
кнопки расположенные
рядом с последней
выбранной кнопкой

• После того как буквы
выбраны слово выводится
красным цветом

• Само слово составлено из
букв кнопок

• “Доступные буквы” всегда
определяются по последней
выбранной букве

• Уже выбранные буквы
исключаются!

Общий подход к решению задачи

• Не изобретайте колесо!
• В Swing уже есть готовые кнопки и

панели
– Просто модифицируйте их поведение!

• Создайте класс потомок JButton который
отображает клетку игры Боггл так как это
требуется в задании
– Управляейте состоянием кнопки,

внешним видом, значением клетки, и пр.

• Создайте класс потомок JPanel который
отображает всю доску Боггл
– Методы для подготовки доски к игре, и

получения текущего слова
– Обработчики событий от кнопок для

обновления их внешнего вида

Внешний вид компонентов Swing

• Все компоненты Swing наследуются от javax.swing.JComponent
– Он содержит общий функционал для всех компонентов
– Пользовательские компоненты, которые сами прорисовывают

свой внешний вид также наследуются от JComponent

• Есть много способов поменять вид JComponent
– Задать всплывающую подсказку, добавить одну или несколько

рамок, изменить цвет фона/текста, изменить видкурсора, шрифт, и
т.д.

• Компонент можно также активировать/деактивировать
(enable/disable)
– Неактивный компонент не получает пользовательский ввод
– Пользовательский интерфейс прорисовывает такой элемент в

серых тонах
– Используйте методы setEnabled(boolean) и isEnabled()

Именование компонентов Swing

• Соглашение о именах компонентов
Swing

• Все компоненты Swing наследуются от
JComponent
– Это Swing аналог типа Java AWT

Component

• Имена всех компонентов Swing
начинаются с буквы “J”

• За исключением случаев, когда это
действительно не имеет смысла,
следуйте в вашем коде этому
соглашению
– Т.е. JBoggleButton, JBoggleBoard

Компоненты Swing и шрифты

• Шрифт компонентов Swing можно изменить
– Методы setFont(Font) и getFont()

• Класс java.awt.Font управляет шрифтами в Java
• Шрифты Java разделяются на две категории:

– Физические шрифты соответствующие шрифтам
установленным на вашем компьютере (например Arial
или Helvetica)

– Логические “встроенные” шрифты которые должны
поддерживать все виртуальные машины Java
• Обычно эти шрифты получаются отображением имен каждого

логического шрифта в физический шрифт использующийся по
умолчанию в операционной системе

• Serif, SansSerif, Monospaced, Dialog, и DialogInput

Компоненты Swing и шрифты (2)

• Легче всего задать шрифт в конструкторе класса Font
– Font(String name, int style, int size)

– Класс Font имеет константы для всех имен и стилей
логических шрифтов

// Получаем жирный шрифт размером 20-пунктов не serif
Font f = new Font(Font.SANS_SERIF, Font.BOLD, 20);

– Можно задать другие имена шрифтов, но не гарантируется
что они будут доступны!

// Получаем наклонный шрифт Times New Roman, 12-пунктов
f = new Font("Times New Roman", Font.ITALIC, 12);

– Если имя шрифта неизвестно Java переходит на логический
шрифт “Dialog”

– Предложение: используйте в конструкторе только
логические имена шрифтов

Компоненты Swing и шрифты (3)

• Чтобы получить список шрифтов в системе используйте:
Font[] java.awt.GraphicsEnvironment.getAllFonts()
– Возврашает массив объектов Font который содержит все

доступные шрифты
– Все возвращаемы шрифты имеют размер 1-пункт
– Выглядит это примерно так: это текст размером в 1-пункт (the dot is “this text is 1-point”)
– Приложение должно получить шрифты из этих “базовых

шрифтов”

• Для того чтобы ваше приложение было масксимально
переносимым используйте этот механизм для поиска
системных шрифтов
– Или просто используйте логические шрифты

Компоненты Swing и рамки

• Компоненты Swing могут иметь рамку
– Рамка увеличивает размер компонента Swing

• Для установки и получения ссылки на рамку
используются методы via setBorder(Border) и getBorder()

• Border это интерфейс определенный в пакете
javax.swing.border
– см. реализации в Java API!

• Есть два способа получить простую рамку:
– Создать ее самому:
Border b = new LineBorder(Color.RED, 3);

• Воспользоваться классом javax.swing.BorderFactory
Border b = BorderFactory.createLineBorder(Color.RED,

3);

Ссылки

• Java. Эффективное программирование.
Джошуа Блох

• Пункт 17: Используйте интерфейсы только
для определения типов

• Пункт 21: Заменяйте конструкцию enum
классом

http://www.ozon.ru/context/detail/id/1259354/
http://www.ozon.ru/context/detail/id/1259354/
http://www.ozon.ru/context/detail/id/1259354/
http://www.ozon.ru/context/detail/id/1259354/
http://www.ozon.ru/context/detail/id/1259354/
http://www.ozon.ru/context/detail/id/1259354/

