
Программирование на языке Java.
Часть 2.

Лекция 4

Курс для самостоятельного
изучения

Оригинальный текст: CS11 C++ Track © California Institute of
Technology

Темы лекции

• Сегодня нет программирования!

• Средства управления проектами:

– Автоматизация процесса компиляции

– Средства управления исходным кодом

• Главные задачи:

– Улучшить структуру проекта

– Автоматизировать процесс компиляции проекта

– Поместить исходный код в систему контроля
версий

Процесс компиляции проекта

• Для компиляции проекта требуется выполнить
несколько операций:
– Компиляция кода, кода модульных тестов

– Запуск javadoc для генерации документации API

– Запуск модульных тестов и проверка их результатов

• Здесь много работы!
– Автоматизация этого процесса сделает его быстрее и

проще

• Текущая структура проекта довольно запутана!
– Код программы и тестов лежит в одном каталоге

– Там же находятся библиотеки и .class файлы!

Apache Ant

• Ant это платформо-независимый инструмент для компиляции
программ

• Написан целиком на Java
• Ему нужен файл build.xml с описанием процесса компиляции
• Модульная архитектура с большим количеством задач

компиляции
– Компиляция исходных кодов Java
– Запуск javadoc
– Запуск тестовых пакетов JUnit или TestNG и генерация отчетов
– Генерация кода (например для проектов J2EE)
– Перемещение/копирование/удаление файлов,

создание/удаление каталогов
– Отправка электронной почты или другие виды уведомлений
– Взаимодействие с репозиториями исходного кода

Пример файла build.xml

<project name="myproject" default="compile" basedir=".">

 <!-- Global properties used in build -->

 <property name="srcDir" location="src" />

 <property name="buildDir" location="build"/>

 <property name="buildClassesDir"

 location="${buildDir}/classes"/>

 <target name="-init"> <!-- Initialization target -->

 <tstamp/>

 <mkdir dir="${buildDir}" />

 </target>

 <target name="compile" depends="-init"

 description="Build the project sources.">

 <mkdir dir="${buildClassesDir}" />

 <javac destdir="${buildClassesDir}">

 <src path="${srcDir}" />

 </javac>

 </target>

</project>

Свойства Ant
используются для
того чтобы собрать
значения настроек в
одном месте.

Цели могут содержать
зависимости. Они
определяют список
задач которые
следует выполнить

Запуск Ant

• Исполняемый файл Ant называется ant
• Для компиляции цели по умолчанию надо

запустить ant без параметров
– Цель по умолчанию указана в build.xml

• В командной строке можно явно указать цель
(цели)
ant clean test doc

• Можно задать другие параметры
– Подробный вывод: -v или -verbose
– Задать свойства Java: -DpropName=value
– И многое другое!

Свойства Ant

• Свойства это просто пары имя-значение
– И имя и значение это строки
– Их можно указывать в начале файла
– Их можно задать внутри задачи

• Значение свойства извлекается так: ${propName}
• Пример:

<property name="buildDir" value="build" />
<property name="codegenDir" value="${buildDir}/codegen" />

• Значение свойства можно задать только один раз!
– Если свойство указано где либо еще оно молча игнорируется
– (Для того чтобы увидеть, где задаются свойства или где они

заданы по ошибке несколько раз запустите ant –verbose)

Свойства Ant (2)

• Хороший пример:
<target name="debug" description="Set up for debug build">
<property name="java.debug" value="on" />
<property name="java.opt" value="off" />
</target>
<target name="release" description="Set up release build">
<property name="java.debug" value="off" />
<property name="java.opt" value="on" />
</target>
<target name="compile" depends="debug">
<javac debug="${java.debug}" optimize="${java.opt}" ... />
</target>

– По умолчанию, при компиляции используются настройки для отладки.
– Для того чтобы переопределить эту настройку в командной строке

введите:
ant release compile

Цели Ant

• Тэги <target> задают цели компиляции
– У каждой цели есть имя:
<target name="compile">

• Цель также может иметь описание
<target name="compile"

 description="Compile the sources!">

• Имена начинающиеся с прочерка нельзя
указывать в командной строке (цели только
для “внутреннего использования”)
<target name="-init">

Зависимости целей

• Цели могут иметь зависимости
– Ant выполняет анализ зависимостей перед

компиляцией
– Исполняет все задачи в правильном порядке
<target name="–init" />
<target name="clean" depends="–init" />
<target name="compile" depends="–init" />
<target name="test" depends="compile" />

– Запускаем ant test

• Ant исполняет цели –init, compile, и test
именно в этом порядке

Информация о проекте!

• Не знаете какие в проекте цели?
ant –projecthelp

– Выводит список всех целей которые имеют описания
– Заодно выводит описание которое вы поместили в начале

файла build.xml

• Пример:
<project name="paint" default="compile"
basedir=".">

<description>
A simple program for drawing images.
</description>
...
</project>

Структура каталогов проекта

• Итак, пока все у нас находится в одном каталоге
– Исходные файлы проекта, исходные файлы тестов, .class файлы, …

• Гораздо лучше: использовать разные каталоги
– Исходный код расположен в своей структуре каталогов
– Создаваемые файлы (.class файлы, и др.) помещаются куда то еще!
– Исходные файлы защищены от перезаписи во время компиляции
– Облегчается процесс очистки: Просто стереть каталог с

результатами компиляции!

• Аналогично, следует отделить исходные файлы тестов от
исходных файлов проекта
– Они не должны входить в окончательный пакет, поэтому их надо

держать отдельно

• Все другие ресурсы, документы, картинки, и пр. должны
находится в своем собственном каталоге

Пример структуры проекта

• src исходные файлы проекта
• lib библиотеки которые требуются проекту
• test исходные файлы тестов
• res ресурсы: изображения, тексты, конфигурация, …
• doc проектная документация, инструкции (не javadocs)
• build сюда помещаются результаты компиляции

– codegen сгенерированные файлы исходного кода Java (если есть)
– classes . class файлы созданные javac
– Javadoc сгенерированная документация API
– Tests скомпилированные javac тестовые классы
– results логи тестов
– создаваемые файлы jar могут оставаться в каталоге build

Ant и структура каталогов проекта

• С помощью свойств Ant можно указать каталоги в начале файла
build.xml
<property name="srcDir" location="src" />
<property name="buildDir" location="build"/>
<property name="buildClassesDir"
 location="${buildDir}/classes"/>

• Ранее объявленные свойства Ant можно использовать для того чтобы
указать пути к подкаталогам

• В целях Ant, следует указывать каталоги с помощью свойств
<target name="compile" depends="debug">
 <mkdir dir="${buildClassesDir}" />
 <javac destdir="${buildClassesDir}"
 classpathref="libs.path">
 <src path="${srcDir}" />
 </javac>
</target>

Общие концепции и типы

• Ant имеет несколько концепций которыми пользуются
большинство задач

• FileSet: группа файлов в каталоге
– Задается с помощью элемента <fileset>

• Базовый каталог FileSet обычно задается атрибутом dir

– Поддерживает очень гибкую систему масок
• Можно включать или исключать файлы по заданному шаблону

• Очень простой пример:
– file-set всех исходных кодов тестов, кроме тех которые

расположены в subpackage foo, и еще не готовы:
<fileset dir="${testSrcDir}">
<include name="**/Test*.java" />
<exclude name="**/foo/**" />
</fileset>

• Многие задачи Ant могут работать с FileSet

Шаблон ** выбирает
ноль или несколько
уровней каталогов

Общие концепции и типы (2)

• Структуры содержащие пути:
– Механизм для создания сложных путей к классам и других путей
– Часто используется в задачах компиляции и запуска кода Java

• Пример: пути к классам
<classpath>
 <pathelement location="${libDir}/foo.jar" />
 <pathelement location="${buildClassesDir}" />
</classpath>

• Могут также содержать списки FileSet:
<classpath>
 <fileset dir="${libDir}" includes="*.jar" />
</classpath>

Общие концепции и типы (3)

• Можно создавать ссылки на пути
– Для определения нескольких путей которые зависят друг от друга

• Пример:
Один путь для запуска самого проекта, а другой путь для запуска тестов
<path id="libs.path">
 <fileset dir="${libDir}" includes="*.jar" />
...
</path>
<path id="test.path">
<path refid="libs.path" />
...
</path>

• Задачи ссылаются на такое с помощью атрибутов типа:

<javac classpathref="test.path" ... >

Обзор возможностей Ant

• Ant широко используется во многих проектах на языке
Java!

• Он предоставляет много возможностей
– Условная компиляция в зависимости от операционной

системы
– Задачи Ant реализованные с помощью скриптового языка
– Конфигурация загружается из файла
– Обновляет номера версий и заменяет значения в коде
– Исполняет задания контроля версий
– Обновляет вебсайты
– Исполняет задания SSH/FTP
– …

• http://ant.apache.org

Управление исходным кодом

• Вы работаете над большим программным проектом…
• Проблема 1: Вы испортили код

– Нужно вернуться к предыдущей рабочей версии

• Проблема 2: Другие люди тоже работают над проектом
– …возможно над тем же файлом что и вы

• Проблема 3: Централизованный источник информации
о проекте?

• Возможно веб-сайт, на котором выложены текущие
результаты тестов, последняя версия документации API
и прочее.

• Система управления исходным кодом может решить все
эти задачи и многие другие

Управление исходным кодом

• Основная идея:
– Сохраняем все файлы проекта в репозитории
– Репозиторий хранит информацию о всех изменениях

файлов
– Копии проекта извлекаются (check out) из репозитория
– Каждый разработчик изолирован от изменений сделанных

другими

• Изменения в файлах проекта загружаются (check
in/commit) обратно в репозиторий, после того как они
сделаны.

• Множественные изменения в одном файле
совмещаются
– Если это возможно автоматически, иначе вручную!

Распределенный контроль версий

• Новый тренд в системах контроля версий:
– Центральный сервер репозториев не используется!

• Распределенная система контроля версий
– Каждый пользователь имеет собственный локальный репозиторий

• Загружается рабочая копия, она редактируется, затем выгружается обратно

– Пользователи могут легко синхронизироваться с другими репозиториями

• Удобно для широко распределенного проектирования программного
обеспечения
– Например для проектирования программ оpen-source

• Реже используется при разработке коммерческих продуктов
– Программные компании предпочитают хранить все на одном

центральном сервере
– Распределенную систему контроля версий можно использовать и в

централизованной конфигурации

Системы контроля версий

• Коммерческие централизованные системы контроля версий:
– Perforce, Visual SourceSafe, BitKeeper, …

• Свободно распространяемые централизованные системы
контроля версий:
– Subversion – написана как замена CVS

• Свободно распространяемые распределенные системы
контроля версий:
– Git – автор Линус Торвальдс

• Используется для разработки ядра Linux, Eclipse, PostgreSQL, …

– Mercurial (hg) – распределенная СКВ написанная на Python
• Используется в проектах Python, vim, OpenOffice, GNU Octave, …

– Bazaar – также написана на языке Python
• Используется в проектах Ubuntu, GNU Emacs, MySQL, …

Использование Subversion

• Две основные команды Subversion:
– svn

• Программа которую разработчики используют для доступа к
репозиторию

• Может загружать и выгружать файлы, перемещать удалять и
пр.

– svnadmin
• Инструмент для администрирования репозитория
• Используется редко администратором репозитория

• Обе программы имеют набор команд
– Пример svn checkout ...
– Обе программы имеют команду help:

• svn help или svnadmin help

Настройка репозитория

• Начинать надо с создания репозитория
– Репозиторий содержит все настройки и файлы

данных
– Команда:
svnadmin create /path/to/repository

– Путь можно указать абсолютный или
относительный

• Subversion может использовать различные
типы хранилищ
– Файловую систему, или BerkeleyDB
– По умолчанию используется файловая система

Доступ к репозиторию

• Subversion использует формат URL для
адресации репозиториев
– Если требуется можно работать через HTTP

• Для доступа к локальному хранилищу
используйте префикс file:// URL

• Subversion поддерживает удаленный
доступ
– svn://… URL для доступа с сервера Subversion

– Или, svn+ssh://… URL для доступа через SSH

Импорт исходного кода

• Исходный код проекта нужно импортировать в репозиторий
– Это делает команда svn import

• Рекурсивно добавляет все дерево каталога в репозиторий
• В репозитории следует создать логичную структуру каталогов

– Каждый проект (или суб-проект) должен иметь свой собственный
каталог

– Подкаталоги проектов должны также иметь хорошую структуру

• Для проекта Боггл:
– boggle/src
– boggle/test
– И пр. (boggle/build не нужен!)

• Subversion позволяет вам при необходимости переместить
файлы и каталоги
– Обычно это нужно если вы ошиблись…

Импорт исходного кода (2)

• Перейдите в каталог с исходными файлами
– Удалите файлы *.class, *~, и пр.

– Эти файлы не нужно импортировать!

• Импортируйте дерево каталога в репозиторий
– Обычно указывается имя суб-проекта
svn import file:///home/user/cs11/advjava/svnrepo
\

boggle

– Subversion добавляет файлы из локального
каталога (и подкаталоги!) в подкаталог boggle в
репозитории

Работа с проектом

• Теперь репозиторий становится централизованным
хранилищем всех версий всех файлов проекта
– Можно в любое время извлечь любую версию

– Обычно нужна последняя версия

• Нужно получить локальную копию проекта
– Локальную копию версии файлов

– В этой копии можно делать изменения

– Можно периодически синхронизировть сделанные
изменения

– Когда копия заработает выгрузите (check in) ее на
сервер!

Загрузка файлов (check out)

• Для загрузки файлов:
– Выполните команду svn checkout url
– В URL указывается адрес репозитория и каталог внутри него

• Пример загрузки проекта Боггл из репозитория:
svn checkout \
file:///home/joe/advjava/svnrepo/boggle
– Создает локальный каталог с именем boggle, и загружает в

него файл проекта

• Для обновления локальной рабочей копии
– svn update
– Если вызвать из каталога рабочей копии, не нужно

указывать URL!

Работа с локальными файлами

• Командой add можно добавить новые файлы
– Из рабочей копии:
svn add path1 path2 ...

– Можно добавлять каталоги
• Subversion рекурсивно обрабатывает содержимое

каталога

• Команда delete удаляет файлы
– Снова из рабочей копии:

svn delete path1 path2 ...

• Команда move перемещает файлы
svn move frompath topath

Выгрузка изменений

• Изменения в рабочей копии должны быть выгружены
на сервер, чтобы они стали видны всем остальным
– включая результаты команд add/delete/move

• Subversion сначала проверяет что ваша рабочая копия
содержит последнюю версию
– Нельзя выгружать изменения до тех пор пока вы не

получили последнюю версию

• Для выгрузки изменений выполняется команда
 svn commit

– Можно, если требуется, указать файлы для выгрузки

• По умолчанию, операция выгрузки работает рекурсивно

Логи выгрузки

• Subversion перед выгрузкой изменений просит ввести
сообщение лога выгрузки
– В нем вы должны описать сделанные изменения

• Всегда даже для небольших изменений добавляйте это
описание!
– Другим людям нужно знать, что вы сделали
– Вам тоже иногда нужно напомнить об этом

• Клиент Subversion запускает для вас редактор для этого
– Можно указать используемый редактор в переменной

среды окружения SVN_EDITOR (или EDITOR)
– Для коротких сообщений, используйте ключ –m

“сообщение” в командной строке

Отмена изменений

• Используйте команду svn revert для отмены
изменений сделанных в локальной копии
– Subversion сохраняет копии оригинальных файлов,

потому операция не требует обращения к репозиторию

– Нельзя восстановить все изменения (например, нельзя
восстановить удаленные каталоги)

• Другой способ
– Просто удалить рабочую копию и загрузите новую

• Для этого нужен доступ к репозиторию, поэтому он
выполняется немного медленнее чем svn revert

Код в репозитории

• Всегда компилируйте и проверяйте свой код
перед выгрузкой в репозиторий

– Ваши ошибки будут мешать другим людям.

– Версия в репозитории должна компилироваться и
в идеале также хорошо работать.

• Обновляйте свою рабочую копию до
последней версии хранящейся в репозитории

– Это позволит избежать проблем из за
рассинхронизации с процессом проектирования

Документация Subversion

• Веб-сайт Subversion:

– http://subversion.tigris.org

• The Subversion Book (очень полезная!)

– http://svnbook.red-bean.com

• Не забывайте о команде svn help!

Задание этой недели

• Создайте хорошую структуру каталогов проекта
• Создайте скрипт Ant для компиляции проекта

Boggle
– Создайте задачи для:

• Удаления всех результатов компиляции
• Компиляции файлов исходного кода
• Компиляции тестов
• Запуска тестов
• Генерации документации Javadoc

• Загрузите ваш исходный код (и скрипт компиляции)
в репозиторий Subversion

• На этот раз обойдемся без программирования! 

