
Язык программирования Java
Лекция 2

!
Перевод курса CS11 Java Track

Copyright (C) 2007-2011, California Institute of Technology

Содержание

• Пакеты
• Интерфейсы
• Классы коллекций

Пакеты Java
• Классы можно группировать в пакеты (packages)

• Пакет это коллекция логически связанных типов
• Пакеты используют пространства имен

• В одном пространстве имен не может быть двух классов с одинаковыми именами
• Но классы могут иметь одинаковые имена, если они находятся в разных пакетах

• Если пакет класса не указан явно, класс помещается в “пакет по умолчанию”
• Пакет по умолчанию не имеет имени

• Для указания имени пакета используется директива package:
!

• Директива должна быть первой в .java файле
• Она определяет место куда помещаются файлы .java и .class
• Пока не используйте директиву package в своих программах

package cs11;

Работа с классами в
пакетах

• Если класс находится в пакете, то к нему можно
обращаться используя его полное имя
!

• Надо импортировать класс
!

!

• Или импортировать весь пакет
!

java.util.ArrayList myList = new java.util.ArrayList();

import java.util.ArrayList;
...
ArrayList myList = new ArrayList();

import java.util.*;
...
ArrayList myList = new ArrayList();

Пакеты Java API
• Все классы Java API размещены в пакетах.
• Классы пакета java.lang импортируются автоматически
• Для импорта классов из других пакетов следует использовать
директиву import
!

!
• Или так

!

• Импорт пакетов не работает рекурсивно
• Импорт java.* не добавит к программе ничего

import java.util.ArrayList;
import java.util.HashSet;
...

import java.util.*;

Поведение объекта
• Часто необходимо иметь классы, по разному реализующие внешне
одинаковое поведение

• Напомним, что поведение объекта определяется набором его методов
• Наш случай предполагает в классах одинаковый набор методов имеющих

разную внутреннюю реализацию

• Интерфейсы похожи на классы, но содержат только сигнатуры методов
• Интерфейсы содержат только декларацию поведения, но не содержат

определение поведения
• В интерфейсах отсутствует реализация методов, а также поля данных

• Класс может реализовывать несколько интерфейсов
• В Java это называется множественное наследование интерфейсов
• Заметим, что в Java не поддерживается множественное наследование

классов

Интерфейсы
• Интерфейс “определяет протокол взаимодействия
между объектами”
• В интерфейсе объявляется набор методов (поведений)

• Класс, реализующий интерфейс должен содержать
реализации всех методов интерфейса

• Работа с объектом происходит черерез его
интерфейс
• Детали и особенности реализации поведения объекта

скрыты от его клиентов

• Интерфейсы объявляются также как классы
!

!

!

!

• Код помещается в SimComponent.java
• Модификаторы доступа к интерфейсам не

применяются. Доступ всегда public.

/** базовый компонент моделирования. */
public interface SimComponent {
 /** Инициализация компонента. */
 void init(SimConfig sconf);
 /** Выполнить моделирование. */
 void simulate(double timestep);
 /** Завершить моделирование. */
 void shutdown();
}

Интерфейсы и классы
• Классы могут реализовывать интерфейсы

• С экземпляром такого класса можно работать, как будто он имеет
тип интерфейса, который этот класс реализует

• Класс может реализовывать любое количество интерфейсов
• Так реализуется более простой и понятный механизм

множественного наследования
• Интерфейсы не поддерживают наследование

• Нельзя наследовать интерфейс от интерфейса, но интерфейс
может быть реализован классом, а этот класс может иметь класс
наследник

• Тип переменной может быть интерфейсом, так же как и классом

Реализация интерфейсов

• Реализация метода интерфейса в классе должна
обязательно иметь модификатор доступа public
!

!

!

!

• Любой может обратиться к интерфейсу класса
потому, что он public

public class PhysicsEngine implements SimComponent {
 ...
 public void init(SimConfig simConf) {
 ... // делаем здесь что то
 }
 public void simulate(double timestep) {
 ... // делаем здесь что то еще
 }
 ...
}

Использование
интерфейсов

• Интерфейсы следует использовать для разделения программы на
компоненты

• … особенно важно делать это, если какой либо компонент может иметь
различные реализации!

• Компоненты будут взаимодействовать друг с другом через общий интерфейс,
не заботясь о внутренних деталях реализации этого интерфейса в разных
компонентах.

• Пример, хранение календарных событий пользователя
!
!
!
!

public interface CalendarStorage {
 // Загрузить события пользователя
 Calendar loadCalendar(String username);
 // Сохранить календарь пользователя
 void saveCalendar(String username, Calendar c);
}

Использование
интерфейсов (2)

• Сделаем разные реализации хранения событий календаря
• в локальном файле данных:

!
• и на удаленном сервере:

!

!

!
• Теперь напишем код, работающий с интерфейсом, а не с его
реализациями:

!

public class FileCalendarStorage
 implements CalendarStorage {
 ...
}

public class
RemoteCalendarStorage
 implements CalendarStorage {
 ...
}

CalendarStorage calStore = openCalendar();
Calendar cal =
calStore.loadCalendar(username);

Использование
интерфейсов (3)

• В такой схеме можно менять при необходимости детали реализации
• …следя, однако, за тем чтобы интерфейс оставался неизменным

• Если интерфейс становится большим и сложным
• Можно использовать “заглушки”, на этапе разработки, пока интерфейс

реализован не полностью

!
!
!
!
!
!

• Это позволяет параллельно разрабатывать зависимые компоненты программы

public class FakeCalendarStorage
 implements CalendarStorage {
 public Calendar loadCalendar(String username) {
 return Calendar(username); // пустой календарь
 }
 public void saveCalendar(String username,Calendar c){
 // ничего не делаем!
 }
}

Расширение интерфейсов
• Интерфейсы можно расширять:

!

!

!

!

• Интерфейс из этого примера включает все методы,
объявленные в интерфейсе SimComponent

• Все методы, по прежнему, имеют тип доступа public

/** Компонент моделирования работающий по сети. */
public interface DistributedSimComponent
 extends SimComponent {
 /** Подключиться к серверу. */
 void connect(String hostname);
 /** Отключиться от сервера. */
 void disconnect();
}

Коллекции Java
• Java имеет очень полезный набор классов для работы с
коллекциями
• Добавлены в версии Java 1.2

• Эти классы предлагают:
• Интерфейсы для работы с различными типами коллекций
• Различные реализации, обладающие разными характеристиками
• Итераторы, предназначенные для перемещения по элементам

коллекций
• Реализации некоторых общих алгоритмов работы с коллекциями

• Следует отметить, что по производительности и гибкости эти
классы, конечно же, уступают C++ STL

Зачем нужны классы
коллекций?

• Классы для работы с коллекциями существенно облегчают
программирование
• Большинство программ, так или иначе, используют коллекции
• Эти классы делают язык Java более удобным для разработчиков

• Стандартный набор интерфейсов и свойств классов коллекций
• Облегчает изучение
• Упрощает взаимодействие между API

• Java API обеспечивает высоко производительную
эффективную и корректную реализацию методов работы с
коллекциями для пользователей

Интерфейсы коллекций
• Базовые интерфейсы коллекций объявлены в пакете java.util

• Здесь содержится основной функционал для всех типов коллекций
• Collection – базовый набор объектов
• List (список) – линейный список элементов, доступных по индексу
• Queue (очередь) – линейный список элементов “для обработки”

• В очередь можно добавить элемент
• Из очереди можно получить “следующий элемент”
• Какой из элементов “следующий ” зависит от реализации очереди

• Set (множество) – коллекция не содержащая повторяющихся элементов
• Map (ассоциативный список) – список в котором значения
ассоциируются с ключами

Другие интерфейсы
коллекций

• Есть интерфейсы с дополнительными свойствами
• SortedSet (расширение Set)
• SortedMap (расширение Map)
• Эти коллекции гарантированно располагают элементы в

заданном порядке
• Элементы в таких коллекциях должны быть сравнимы

• Это означает, что для пары элементов, всегда можно
сказать какой из них “больше” или они “равны” друг другу

• Для элементов такой коллекции должна существовать
общая процедура сортировки (выстраивания по порядку)

Общие операции
коллекций

• Коллекции, как правило, реализуют следующий набор операций:
• add(Object o) – добавление элемента к коллекции
• remove(Object o) – удаление элемента
• clear() – удаление всех элементов коллекции
• size() – возвращает число элементов в коллекции
• isEmpty() - возвращает true, если коллекции пуста
• iterator() – перебирает элементы коллекции

• Некоторые операции не обязательны для всех коллекций
• Если коллекция не поддерживает операцию, вызывается исключение

UnsupportedOperationException
• Операции отличаются по скорости исполнения

Реализации коллекций
• Есть несколько реализаций каждого интерфейса

• Все коллекции реализуют базовый набор функций
• Коллекции реализуют разные способы хранения данных
• Коллекции имеют разную производительность
• Некоторые коллекции имеют дополнительные функции

• Которые могут не входить в интерфейс

• Детальное описание можно найти в документации Java API
• В документации на интерфейс можно найти список его реализаций
• В документации на каждую реализацию можно найти детали

касающиеся производительности и способов хранения данных

Реализации списков
• LinkedList – двунаправленный связный список

• Каждый элемент имеет ссылку на предыдущий и последующий элемент
• Время доступа к элементу спиcка зависит от его позиции
• Время вставки и добавления элементов не зависит от их позиции
• Элементы хранят не только значение, но и служебную информацию (указатели на

следующий и предыдущий элементы и др.)
• Такие списки удобно использовать, если количество элементов изменяется во время работы
• Класс имеет дополнительные функции для извлечения/удаления первого и последнего

элементов.

• ArrayList – хранит элементы в массиве
• Время доступа к элементу не зависит от его позиции в массиве
• Время добавления обычно не зависит от позиции
• Рекомендуется использовать в случае, если размер массива не часто меняется во время

работы
• Класс имеет дополнительные методы для преобразования в обычный массив

Реализация множеств
• HashSet

• Элементы группируются в “корзины” по хэш коду
• Время добавления/удаления элементов не зависит от позиции
• Время проверки присутствия элемента в списке не зависит от позиции

элемента
• Элементы не хранятся, в каком либо порядке
• Для каждого элемента должна существовать функция вычисления хэша.

• TreeSet
• Отсортированные элементы хранятся в сбалансированном дереве
• Время добавления/удаления и поиска элементов возрастает

логарифмически с увеличением размера
• Элементы должны поддерживать операцию сравнения

Реализация ассоциативных
списков

• Напоминает реализацию множеств
• Ключи используются для поиска значений в списках
• Ключи не повторяются

• HashMap
• ключи хешируются
• Быстрый поиск, но элементы хранятся в случайном порядке

• TreeMap
• ключи сортируются
• Поиск медленнее, но элементы хранятся в порядке

сортировки.

Коллекции в Java 1.5
• До версии Java 1.4 элементы коллекций имели тип Object
!
!
!

• Для объектов других типов всегда приходилось явно делать преобразование типа
• В коллекцию элементов Point можно было добавить объекты других типов!

• В версии Java 1.5 добавлена поддержка т.н. обобщенного программирования (generics)
• Класс или интерфейс может иметь параметр, указывающий на тип данных, с которыми будет

работать создаваемый экземпляр этого класса/интерфейса:

!
!
!

• Преобразование типов больше не требуется
• В такую коллекцию можно добавить только элементы типа Point
• Это очень полезное расширение синтаксиса языка.

LinkedList points = new LinkedList();
points.add(new Point(3, 5));
Point p = (Point) points.get(0);

LinkedList<Point> points = new
LinkedList<Point>();
points.add(new Point(3, 5));
Point p = points.get(0);

Применение коллекций
• Работа со списками и множествами не составляет большого труда:
!

!
• Заметим, что тип элементов следует указывать в типе переменной и в

операторе new
• Инициализация ассоциативных списков чуть более многословна:
!

!
• Сначала указывается тип ключа, затем тип значения

• Другие подробности смотрите в документации Java API

HashSet<String> wordList = new HashSet<String>();
LinkedList<Point> waypoints = new LinkedList<Point>();

TreeMap<String, WordDefinition> dictionary = new
 TreeMap<String, WordDefinition>();

Перебор элементов
коллекций

!

!

!
• Этот способ нельзя использовать для коллекций с другим типом
элементов

• Для перебора элементов коллекций есть другой универсальный
метод - интерфейс Iterator:
• hasNext() – возвращает true если имеется следующий элемент
• next() – возвращает следующий элемент коллекции

• У интерфейса Interator имеется расширение ListIterator
• Этот интерфейс имеет множество дополнительных функций.

ArrayList – перебор делается очень просто:
ArrayList<String> quotes;
...
for (int i = 0; i < quotes.size(); i++)
 System.out.println(quotes.get(i));

 Использование итераторов
• Итератор коллекции можно получить с помощью метода

iterator()
• Пример:
!

!

!

• Итераторы также используют технологию обобщенного
программирования

• Итератор можно использовать для удаления текущего
элемента

HashSet<Player> players;
...
Iterator<Player> iter = players.iterator();
while (iter.hasNext()) {
 Player p = iter.next();
 ... // делаем что то с p
}

Расширенный синтаксис
цикла for в Java 1.5

• Работа с итераторами по схеме которая использована в примере, не очень
удобна

• Поэтому в Java 1.5 появилось расширение синтаксиса для упрощения работы с
итераторами
!
!

• Итератор используемый в цикле недоступен
• Такой способ удобен для простого перебора элементов коллекции

• Расширенный синтаксис цикла for можно использовать с массивами:

!
!
!

for (Player p : players) {
 ... // делаем что то с p
}

float sum(float[] values) {  
 float result = 0.0f;
 for (float val : values)
 result += val;
 return result;  
}

Алгоритмы коллекций
• Класс java.utils.Collections имеет несколько полезных алгоритмов

• Не путать с интерфейсом Collection
• Реализованы в виде статических методов
• Алгоритмы реализованы эффективно, имеют высокое быстродействие и

используют синтаксис обобщенного программирования.

• Например , сортировка:

!
!

!
• Метод не создает новую отсортированную коллекцию, изменяется порядок

элементов коллекции groceries

• Смотрите подробности в документации Java API
• Класс Array также имеет реализации полезных алгоритмов.

LinkedList<Product> groceries;
...
Collections.sort(groceries);

Элементы коллекций
• Элементы коллекций могут иметь некоторые дополнительные
свойства

• Для элементов класса List ничего дополнительно не требуется
• … если только не используются методы contains(), remove() и им

подобные
• В этом случае элементы должны иметь правильную реализацию метода

equals()
• Такая правильная реализация должна удовлетворять условиям:

• a.equals(a) == true
• a.equals(b) == b.equals(a)
• если a.equals(b) == true и b.equals(c) == true, то a.equals(с) == true
• a.equals(null) == false

Элементы множеств и
ассоциативных списков

• Элементы множеств и ассоциативных списков должны иметь
дополнительные свойства
• Множества должны поддерживать операции над элементами
• Ассоциативные списки должны поддерживать те же операции над

ключами

• Метод equals() должен работать правильно
• Элементы TreeSet, TreeMap должны поддерживать сортировку

• Класс элемента должен содержать реализацию интерфейса
java.util.Comarable или java.util.Comarator

• Элементы HashSet, HashMap должны поддерживать хеширование
• Для них требуется реализация метода Object.HashCode().

Object.hashCode()
• Метод hashCode() объявлен в классе java.lang.Object:
 public int hashCode()

• Он вычисляет хэш значения объекта
• hashCode() используется классами HashSet, HashMap и некоторыми другими классами

• Правило 1:
• Два одинаковых объекта (a.equals(b) == true) должны иметь одинаковые хэш коды
• Но и два разных объекта могут иметь одинаковые хэш коды

• То что объекты имеют одинаковые хэш коды означает только лишь, что сами они “могут
быть одинаковыми”

• Правило 2:
• Если вы в своем классе изменяете реализацию equals родительского класса, вам

следует также сделать свою реализацию hashCode()
• (См. правило 1)

Реализация hashCode()
• Рассмотрим такой вариант реализации этого метода:
!
!

• Он удовлетворяет указанным выше правилам? Технически да …
• но на практике он делает программу крайне неэффективной

• Функция вычисления хэша должна генерировать значения в широком диапазоне
• Точнее говоря, значения этой функции должны принадлежать равномерному

распределению
• Это условие повышает эффективность выполнения операций над хэш таблицами
• В примере выполнено основное требование к значению хэша - одинаковые

объекты должны иметь идентичные значения хэша
• Но также неплохо устроить так, чтобы неодинаковые объекты имели различные

значения хэша.

public int hashCode() {
 return 42;
}

Реализация hashCode() (2)
• Если поле класса включено в процедуру сравнения

equals(), оно также должно участвовать в вычислении
хэша

• Комбинируем несколько значений для вычисления хэша
!

!

!

!

int hashCode() {
 int result = 17; // какое то начальное значение
 // используйте другие начальные значения
 // для добавления полей в хэш
 result = 37 * result + field1.hashCode();
 result = 37 * result + field2.hashCode();
 ...
 return result;
}

Вычисление хэша
• Еще несколько рекомендаций

• Если поле логическое (типа boolean) используйте числа 0 и 1 для хэш кода
• Если поле имеет целый тип преобразуйте его к int
• Если поле это объект (но не массив)

• Вызовите его метод hashCode() или используйте 0 для null

• Если поле массив
• Добавляйте в хэш все его элементы

• Подробнее см. Item 8 Effective Java: Programming Language Guide,
Joshua Bloch, Addison Wesley, 2001, ISBN: 0-201-31005-8.

• Если вычисление хэша требует много времени, кэшируйте результат
• В этом случае, пересчет хэша следует выполнять каждый раз при

изменении объекта

Сравнение и
упорядочивание объектов

• Интерфейс java.lang.Comparable<T> используется для сортировки элементов:
 public int compareTo(T obj)
• Метод возвращает значение, которое указывает на порядок следования
элементов:

• Результат < 0 означает, что this меньше чем obj
• Результат == 0 означает, что this и obj одинаковы
• Результат > 0 означает, что this больше чем obj

• Этот метод определяет естественный порядок следования экземпляров класса
• то есть, “обычный” или “наиболее подходящий” порядок сортировки

• Порядок сортировки должен соответствовать реализации метода equals()
• a.compareTo(b) возвращает 0 только если a.equals(b) == true

• Этот интерфейс следует реализовать для элементов TreeSet/TraaMap.

Другие способы сортровки

• Для сортировки можно использовать другой тип функций
• Для этого нужен отдельный объект реализующий интерфейс

java.util.Comparator<T> :

 int compare(T o1, T o2)
• Алгоритмы сортировки классов коллекций так же могут с
помощью объекта компаратора сортировать свои элементы
• Могут выполнять самые различные виды сортировки

• Как правило, компаратор делается как вложенный класс
• Например, класс Player может иметь вложенный

(объявленный внутри него) класс ScoreComparator

Java generics в
интерфейсах

• Тип интерфейса java.lang.Comparable<T> :
 int compareTo(T obj)

• Когда реализуете интерфейс, что такое T следует указать в
коде:
!

!

!

!

• Эту же технологию можно использовать с интерфейсом
java.util.Comparator.

!
class Player implements Comparable<Player> {
 ...
 int compareTo(Player obj) {
 ...
 }
}

Задание 2 - Поиск
маршрута A*

• Алгоритм поиска маршрута A* широко используется в
навигационных картах с препятствиями
• Он позволяет найти оптимальный маршрут между двумя

координатами, если маршрут существует
• Пример:
!

!

!

!

Реализация A*
• Для реализации алгоритма A* требуются две коллекции:

• Коллекция “открытых точек маршрута” , которые предстоит
проверить

• Коллекция “закрытых точек маршрута” , которые уже
проверены

• Ваши задачи:
• Написать методы equals() и hashCode() для класса Loaction
• Доделать класс AStarState, который контролирует открытые и

закрытые точки маршрута A* алгоритма.
• Поиграть с забавным пользовательским интерфейсом A*

алгоритма ☺

