
Язык программирования Java
Лекция 4

!
Перевод курса CS11 Java Track

Copyright (C) 2007-2011, California Institute of Technology

Файловые объекты
• Java работает с файлами с помощью класса java.io.File

• Классу можно указывать относительный или абсолютный путь к файлу
• Абсолютный путь начинается в корневом каталоге файловой
системы
• “C:\Documents and Settings\Donnie Pinkston\Desktop\Foo.java”

• Заметим, что символ “\” вставляется в строки Java с помощью esc
последовательности

• Или “/home/Donnie/Desktop/Foo.java”.
• Относительные пути начинаются в текущем каталоге

• “.” можно использовать для указания текущего каталога
• “..” для ссылки на родительский каталог текущего каталога

Файловые объекты (2)
• В классе java.io.File объявлены несколько констант

• File.separator типа String содержит символ разделителя в пути
файлов
• В Windows это “\\” в Unix системах “/”

• Тот же символ типа char задается константой File.separatorChar
• Есть также константа задающая разделитель между
несколькими путями
• File.pathSeparator это строка содержащая символ разделитель

• В Windows это “;” в Unix “:”

• Эти константы полезны в случае, если вы программно генерируете
путь к классу или коллекцию путей к файлам или каталогам

Создание объектов файлов
• Класс File имеет несколько конструкторов:

• File(String pathname)
• Указывается абсолютный или относительный путь к файлу.

• File(File parent, String child)
• Parent в этом случае то каталог, в котором находится файл

child

• File(String parent, String child)
• Тоже самое, но parent – имя каталога

• Эти конструкторы не проверяют, существует ли
указанный файл

Информация о файловых
объектах

• Для проверки файлов в классе имеется много полезных методов:
• boolean exists()

• Проверяет существует ли в файловой системе файл или каталог соответствующий объекту

• boolean isFile()
• Поверяет является ли объект “нормальным” файлом (а не каталогом)

• boolean isDirectory()
• Проверяет является ли объект каталогом.

• boolean canRead()
• Существует ли файл и можно ли прочитать его содержимое.

• boolean canWrite()
• Существует ли файл и можно ли в него записать данные.

• long length()
• Возвращает длину файла

Управление файлами
• Класс выполняет основные операции с файлами,
такие как:
• boolean delete()

• Удаляет файл или каталог (если он пуст). Возвращает
true если операция выполнена, иначе false

• boolean renameTo(File dest)
• Перемещает файл
• Может не сработать, если файл уже существует или

копируется в файловую систему другого типа

Навигация по файловой
системе

• Класс File можно использовать для навигации по файловой
системе:
• File[] File.listRoots()

• Статический метод возвращает массив объектов File в указанном
каталоге

• File[] listFiles
• Метод возвращает массив объектов файлов в указанном каталоге

• (поговорим о массивах в языке Java позже).

• Метод listFiles() может использовать фильтр для поиска файлов
• Для исключения файлов из возвращаемого этим методом списка на

основании заданных критериев, надо реализовать интерфейс
FilenameFilter или FileFilter

Потоковый ввод/вывод
• В Java используется механизм потокового ввода/вывода

• java.io.InputStream и java.io.OutputStream
• Абстрактные классы включающие объявления всех операций

с потоками

• Поток, обычно, открывается с помощью какого либо
особенного для этого вида потока механизма
• Например, открывается файл и открывается доступ к его

входному потоку
• Или открывается сетевое соединение и открывается доступ к

выходному потоку для передачи данных и к входному потоку
для приема данных

Потоковый ввод/вывод (2)
• Методы класса InputStream:

• read() читает один или несколько байтов
• Блокирующий метод: не возвращает управление, до тех пор, пока данные не будут

получены или пока не станет ясно, что чтение невозможно

• available() возвращает количество байтов которое можно прочитать без
блокировки

• close() закрывает входной поток
• Освобождает все ресурсы, связанные с потоком

• Методы класса OutputStream:
• write() записывает в поток один или несколько байтов
• flush() заставляет передать содержимое внутренних буферов записи Java

операционной системе. (ОС тоже может буферизировать эти данные)
• close() закрывает выходной поток

Потоковый ввод/вывод (3)
• InputStream и OutputStream это бинарные потоки

• Данные передаются байтами
• Как правило потоки такого типа не подходят для

текстовых данных (особенно для данных зависящих
от настроек языка)

• С символьными данными работают интерфейсы
java.io.Reader и java.io.Writer
• Они имеют тот же набор операций, но для значений

типа char

Потоковый ввод/вывод (4)
• В Java поддерживается комбинирование потоков

• Например: для чтения строк текстового файла его можно сначала
открыть с помощью класса FileInputStream (потомка InputStream):

!
• Затем “обернуть” входной поток в Reader для того чтобы считывать

символьные данные:

!
• И добавить буферизацию, чтобы можно было считывать строки

целиком:

!

• (Функции ввода/вывода Java немного раздражают …)

FileInputStream fis = new FileInputStream("foo.txt");

InputStreamReader isr = new InputStreamReader(fis);

BufferedReader br = new BufferedReader(isr);

Потоковый ввод/вывод и
исключения

• Объекты файлов информируют об ошибках через
значения возвращаемые методами
• boolean delete()
• boolean renameTo(File dest)

• Большинство операций ввода/вывода для
сообщения об ошибках используют механизм
исключений
• Обычно используется класс java.io.IOException или

его потомки

Исключения
• В некоторых случаях код может обнаружить ошибку, но не в
состоянии ее исправить
• Например, FileInputStream способен обнаружить, что файл нельзя

открыть, но что он может с этим поделать?

• Есть несколько способов сообщить об ошибке вызывающему коду:
• Вернуть код ошибки

• … если конечно все произошло не в конструкторе, который не имеет
возвращаемого значения

• Вызвать исключение для сообщения об ошибке

• Исключение прерывает текущие вычисления
• Управление немедленно передается коду обработчика

Вызов исключений
• Вызвать исключение просто:
!

!

!

!
• Создается новый объект исключения, и затем исключение
вызывается

• Исключение содержит информацию о стеке
• В месте, где оно было создано (а не где оно было вызвано …)
• Лучше всего создавать и вызывать исключения в одном и том же

месте

public double computeValue(double x) {
 if (x < 3.0) {
 throw new IllegalArgumentException(
 "x должен быть >= 3, получен " + x);
 }
 return 0.5 * Math.sqrt(x – 3.0);
}

Вызов исключений (2)
• Когда исключение вызывается, управление немедленно передается
обработчику этого исключения
!
!
!
!
!

• В этом примере, после вызова исключения больше никакой код в
функции не исполняется

• Для исключения можно задать текст сообщения об ошибке
• В сообщении следует написать, что ожидали получить, и что случилось на

самом деле.

public double computeValue(double x) {
 if (x < 3.0) {
 throw new IllegalArgumentException(
 "x должен быть >= 3, получен " + x);
 }
 return 0.5 * Math.sqrt(x – 3.0);
}

Обработчики исключений
• Для обработки исключения код должен его перехватывать
!

!

!

!

!

• Код внутри блока try может привести к вызову исключения
• Блок catch обрабатывает ошибки в случае их появления

• Ошибки типа IllegalArgumentException

void main(String[] args) {
 double x = getDouble();
 try {
 double result = computeValue(x);
 System.out.println("Результат:" + result);
 }
 catch (IllegalArgumentException e) {
 System.out.println("Неправильный результат: " +
 e.getMessage());
 }
}

Обработчики исключений
(2)

• Если исполнение функции computeValue приведет к вызову
исключения, управление немедленно будет передано в блок
catch c соответствующим типом исключения
!

!

!

!

!

!

• Вместо результата на экране будет выведено сообщение об
ошибке

void main(String[] args) {
 double x = getDouble();
 try {
 double result = computeValue(x);
 System.out.println("Результат:" + result);
 }
 catch (IllegalArgumentException e) {
 System.out.println("Неправильный результат: " +
 e.getMessage());
 }
}

Обработчики исключений
(2)

• Для обработки возможных исключений в коде, этот код следует
поместить в блок try
• Блок try не может обрабатывать исключения, возникающие за его

пределами
• Тип исключения определяет блок catch, который должен обработать
это исключение
• Один или несколько блоков catch должны располагаться сразу за

блоком try
• Первый блок, тип исключения которого совпадает с типом вызванного

исключения, обрабатывает это исключение.
• После завершения исполнения блока catch исполнение программы

возобновляется, начиная с места расположенного сразу за блоками try/
catch (всегда выполняется только один блок catch)

Исключения Java
• Java имеет ограничения касающиеся обработки
исключений:
• Классами исключений могут быть только экземпляры

класса java.lang.Throwable или его потомков
• В общем случае, методы должны объявлять, какие

типы исключений они могут вызвать
• Это еще один пример того как Java следит за

корректностью кода
• Программа должна обрабатывать исключения или явно

указывать, какие типы исключений могут быть вызваны

Иерархия исключений Java
• Throwable

• Базовый класс для всех классов исключений Java
• Error

• Серьезные проблемы в виртуальной машине Java
Приложения обычно не должны обрабатывать эти
исключения

• Exception
• Стандартные, рядовые ошибки, которые

приложение обычно обрабатывает
самостоятельно.

• RuntimeException
• Приложение может обрабатывать или не

обрабатывать эти ошибки, обычно указывающие
на ошибки в программировании

. . .

. . .

. . .

Throwable

Error Exception

Exception

Проверяемые исключения
• Проверяемым исключением может быть любой класс исключения

• Наследованный от класса Exception или его дочерних классов, за исключением
класса RuntimeException и его потомков

• Метод должен явно указывать исключения, которые он может вызвать:
!
!
!
!
!

• Компилятор Java проверяет код на соответствие этой спецификации
• Исключения времени исполнения (RuntimeException) можно также
указывать в объявлении методов, но это не обязательно

import java.io.IOException;
public String getQuote() throws IOException {
 ...
 if (errorOccurred)
 throw new IOException("Ошибка!");
 return quote;
}

Проверяемые исключения
(2)

• В методе можно указать базовый класс вызываемого исключения
!

!
• Все эти ошибки наследованы от IOException:

• UnknownHostException (неизвестно имя хоста)
• EOFException (не ожидаемый конец файла)
• SocketException (общая проблема сокетов)

• Метод в приведенном выше примере, может вызывать эти
исключения, не меняя своего описания
• Код метода может также перехватывать исключения родительских

классов, то есть в нашем случае, IOException и выше

public String getQuote() throws IOException {
 ...
}

Какие исключения надо
обрабатывать?

• В документации Java API перечислены классы
исключений
• И указаны случаи, когда вызываются эти исключения

• Сетевые библиотеки и библиотеки обслуживающие
ввод/вывод могут вызывать множество исключений

• Библиотеки управления исполнением потоков также
вызывают ряд исключений

• Всегда важно правильно обрабатывать исключения,
для того чтобы ваше приложения было устойчиво к
ошибкам

Задание
• На этой неделе добавим немного новых функций
в вашу программу для изучения фракталов:
• Возможность отображать несколько фракталов

• Выбор фрактала сделаем выпадающим списком

• Возможность сохранять изображение фрактала на
диск

• Обе функции добавить не сложно
• Для этого мы можем воспользоваться различными

функциями Java API

Несколько видов
фракталов

• Большинство графических
библиотек имеют в своем
составе выпадающие списки
• Позволяют выбирать из списка

вариантов

• Swing имеет класс JComboBox
• Его очень легко настроить и

использовать
• При выборе элемента списка он

вызывает событие ActionEvent

Сохранение изображений
• Добавим к интерфейсу
кнопку для сохранения
текущего изображения

• Swing имеет полезные
классы:
• JFileChooser, который

позволяет выбрать файл для
открытия или сохранения

• JOptionPane для вывода
диалоговых сообщений,
если что то пойдет не так ☺

Сохранение изображений
(2)

• Теперь появилось несколько
источников событий

• Как правило, желательно
ограничить общее
количество объектов
создаваемых программой

• Цель:
• Создать один класс

обработчик, который будет
обслуживать события от
всех источников

Команды действий
• Большинство компонентов, которые порождают события ActionEvent,
имеют поле, в котором можно указать команду, обозначающую это
действие

• Используйте это поле для того чтобы указать назначение или действие
совершаемое источником события

!
!

• У других источников будут собственные значения команд
• Значение команды передается в классе ActionEvent

• Его можно получить, вызвав метод getActionCommand()

• Теперь ActionListener может обрабатывать события от разных источников,
и выполнять нужное действие в зависимости от значения команды

JButton saveButton = new JButton(“Сохранить изображение");
saveButton.setActionCommand("save");

Пример обработки событий
нескольких источников

void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if (e.getSource() == fractalChooser) {
 ... // получить выбранный пользователем фрактал
 ... // и нарисовать его.
 }
 else if (cmd.equals("reset")) {
 ... // Сбросить изображение.
 }
 else if (cmd.equals("save")) {
 ... // Сохранить текущее изображение фрактала.
 }
}

