
Язык программирования Java
Лекция 5

!
Перевод курса CS11 Java Track

Copyright (C) 2007-2011, California Institute of Technology

Содержание

• Принципы работы с потоками в Java
• Swing и потоки
• Замечания к заданию 5

Потоки в Java
• Поток это последовательно исполняющаяся цепочка
инструкций программы
• Потоки имеют начало и конец
• Поток может одновременно делать только что то одно

• Каждая программа имеет, по крайней мере, один поток
• Это поток называется основным потоком программ. В

этом потоке исполняется метод main()
• Многозадачные программы имеют несколько потоков

• Они могут делать разные вещи “одновременно”

Стандартные потоки Java
• Виртуальная машина Java использует для работы
несколько потоков
• Основной поток исполняет вашу программу
• Отдельный поток может создаваться для “сборки

мусора”
• Java AWT/Swing запускает поток для обработки событий

• Некоторые библиотечные классы Java используют
потоки
• Вы можете создавать и запускать свои собственные

потоки. Но (увы!) на этот раз мы этого делать не будем

Потоки и ресурсы
• Поток может иметь локальные ресурсы, которые используются только самим потоком
• Потоки также могут иметь общие с другими потоками ресурсы

• Это порождает много проблем

• Одна из главных проблем несгласованный доступ к ресурсам
• Пусть, например, count это общая переменная. Предположим, count = 15
• Два потока выполняют операцию count = count + 1;

!
!
!
!
!
!

Поток A
Извлекаем count: 15

Вычисляем 15+1=16

Сохраняем 16 в count

Поток Б

Извлекаем count: 15

Вычисляем 15+1=16

Сохраняем 16 в count

Захват общих ресурсов
• Общие ресурсы должны управляться автоматически

• Одновременно только один поток должен имеет доступ к ресурсу
• Общий ресурс, может быть захвачен потоком

• Если поток имеет возможность захватить ресурс несколько
раз, может возникнуть, так называемая, тупиковая ситуация
• Поток А захватывает ресурс Р1
• Поток Б захватывает ресурс Р2
• Поток А пытается захватить ресурс Р2 …
• Поток Б пытается захватить ресурс Р1 …
• Здесь проблема в очередности захвата ресурсов

Поток A

Поток Б

P1

P2

Swing и потоки
• Swing имеет отдельный поток для обработки
событий
• Поток диспетчер событий

• C компонентами Swing, после того как они
становятся видимыми, можно работать только из
этого потока диспетчера

• Компоненты Swing можно инициализировать из
других потоков (пока компоненты невидимы)
• Обычно это делают в основном потоке приложения

Длительные задачи
• Очень часто пользовательский интерфейс должен
выполнять длительные по времени задачи
• Например, веб браузер может загружать большой файл,

одновременно отображая содержимое веб страницы
• Проблема:

• Во время исполнения длительной операции поток
диспетчер событий не может обрабатывать события!

• Имеется только один поток диспетчер. Если он перестает
работать, пользовательский интерфейс “зависает” до тех
пор пока не завершится исполнение задачи

Длительные задачи (2)
• Swing имеет решение этой проблемы:

• javax.swing.SwingWorker
• Этот класс может выполнить длительную задачу в
рабочем потоке в фоновом режиме
• Поток не влияет на работу диспетчера событий
• Программа продолжает взаимодействовать с

пользователем во время исполнения задачи
• Когда задача завершена, результаты работы

SwingWorker становятся доступны в потоке диспетчере
• Есть возможность вывести их на экран

Детали реализации
SwingWorker

• SwingWorker это абстрактный класс
• Для выполнения задачи надо сделать наследника этого класса

• И реализовать в нем несколько важных методов:
• protected Object doInBackground()

• В этом методе реализуется длительная задача
• Он никогда не вызывается из потока диспетчера событий
• Вызывается в рабочем потоке из небольшого пула потоков

• protected void done()
• Вызывается всегда в контексте потока диспетчера событий
• Этот метод нужен для передачи графическому пользовательскому

интерфейсу Swing результатов работы задачи

Детали SwingWorker<T,V>
• SwingWorker <T, V>, это класс созданный по
правилам обобщенного программирования
• Он может (и должен) иметь параметры

• T задает тип значения, которое возвращает
doInBackGround()
• protected T doInBackground()

• Если ваша реализация doInBackground ничего не
возвращает:
• Просто укажите для Т тип Object и возвращайте null

Детали SwingWorker<T,V>
(2)

• V это промежуточное состояние
• Некоторые задачи генерируют промежуточные результаты,

которые должны отображаться в пользовательском интерфейсе
• (это нужно далеко не всегда, поэтому не каждый класс использует

этот функционал)

• Если он нужен, метод doInBackGround() должен вызывать
метод:
• protected void publish(V[] chunks)
• Когда требуется вывести промежуточные результаты

• При этом в потоке диспетчере событий будет вызван метод:
• protected void process(List<V> chunks)

Детали SwingWorker<T,V>
(3)

• Как и раньше, если ваш SwingWorker не
сообщает о промежуточных состояниях:
• Просто укажите Object для параметра V и не

используйте метод publish().

Завершение работы
приложения Java

• В Java AWT закрытие главного окна приложения
просто делает его невидимым
• Если вы не позаботитесь о том чтобы закрыть

приложение, оно продолжит работу
• Для того чтобы завершить работу, при закрытии окна

надо зарегистрировать реализацию WindowListener
• В Swing это можно сделать в JFrame:
!

• По умолчанию используется HIDE_ON_CLOSE, так же,
как в окнах AWT

JFrame f = new JFrame("Мое приложение!");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Массивы в Java
• В Java массивы это объекты

• Хотя для них разработан особенный синтаксис
• Пример:
!

!

• В Java все массивы размещаются в памяти динамически
• Обращение к элементам массива с помощью скобок

(как в С / С++)
• Массивы имеют поле length хранящее количество элементов
• Поле length (конечно) доступно только для чтения.

int[] myInts = new int[10]; // Выделить память под массив.
for (int i = 0; i < myInts.length; i++) {
 myInts[i] = 100 * i; // Сохранить в нем данные.
}

Переменные массивов
• При объявлении переменных массивов скобки ставятся после типа , а не после имени
переменной:

• String[] names; а не String names[];
• Второй способ тоже допускается, но не приветствуется

• Переменные массивы можно объявлять без инициализации:
!

!
• Но их надо проинициализировать перед использованием

• Массив можно создать оператором new тип[размер];
• Размер может быть равен 0! Такие массивы называются пустыми

• Переменной массива можно присвоить другой массив
• (Фактически массивы, это объекты в работе с которыми используется дополнительный

синтаксис)

• Массиву можно также присвоить значение null

boolean[] flags; // Массив значений логического типа
float[] weights; // массив чисел с плавающей точкой

Еще о инициализации
массивов

• Значения элементов массива можно задать:
!

!

• Этот упрощенный синтаксис удобно использовать
для инициализации массива

• colorNames это ссылка на массив строк
• Значения массива и его размер можно впоследствии

изменить

String[] colorNames = {
 "киноварь", "терракота", "фуксия", "шартрез", "умбра"
};
// colorNames.length == 5

Массивы объектов
• Массивы объектов первоначально хранят значения null

• йИнициализация массива не инициализирует
автоматически его элементы

• Это надо делать отдельно.
• Пример:
!

!

!

//Резервируем массив для 20 ссылок
Point2d[] points = new Point2d[20];
//создаем новый объект Point2d для каждого элемента
for (int i = 0; i < points.length; i++)
 points[i] = new Point2d();

Многомерные массивы
!

• Элементом массива может быть массив. Каждый элемент nums2d имеет тип
int[]
!

• Cначала выделяется память под массив массивов
!

• Затем выделяется память под каждый внутренний массив.
!
!

• Если размеры массивов одинаковые можно написать проще:
!

int[][] nums2d; // двухмерный массив целых чисел.

nums2d = new int[20][];

for (int i = 0; i < nums2d.length; i++)
 nums2d[i] = new int[50];

int[][] nums2d = new int[20][50]; // то же самое!

Еще о многомерных
массивах

• Внутренние массивы могут иметь различные
размеры
!

!

• Значения элементов можно указать и при
инициализации многомерных массивов
!

int[][] reducedMatrix;
reducedMatrix = new int[20][];
for (int i = 1; i <= 20; i++)
 reducedMatrix[i] = new int[i];

double[][] weights = {
 {3.1,2.6}, {1.5,4.4,-3.6},
null, {6.2}
};

…

Копирование массивов
• Для того чтобы cскопировать один массив в другой используйте

system.arraycopy()
• Для того чтобы сделать копию массива используйте метод clone()

• Метод возвращает тип Object, поэтому надо при вызове сделать
преобразование типов:

!

!
• Это поверхностное копирование – копируются только объекты

верхнего уровня
• Если массив содержит объекты, они не клонируются
• Если элементы массива – массивы, они тоже не клонируются.

int[] nums = new int[35];
...
int[] numsCopy = (int[]) nums.clone();

