
Язык программирования Java
Лекция 6

!
Перевод курса CS11 Java Track

Copyright (C) 2007-2011, California Institute of Technology

Содержание

• Задание 6. Поисковый робот
• Java Sockets API
• Работа со строками

Задание
• На этой неделе пишем простой поисковый робот

• Который подключается к веб серверу
• Отправляет серверу HTTP запрос
• Получает HTTP ответ от сервера
• Разбирает этот ответ и отыскивает в нем ссылки на

другие страницы
• Повторяет весь процесс для каждой найденной

ссылки!

Сетевые протоколы
• В сети Интернет главным образом используются два протокола:
• TCP/IP (Или просто TCP)

• Протокол управления передачей
• Потоко-ориентированный протокол обеспечивающий надежную и упорядоченную

передачу данных
• UDP

• Протокол пользовательских датаграмм
• Протокол для передачи сообщений (датаграмм), не обеспечивающий надежную и

упорядоченную передачу данных.
• Java поддерживает оба протокола с помощью пакета java.net:

• TCP – java.net.Socket
• UDP – java.net.DatagramSocket
• Поддерживаются также другие протоколы, например SSL в пакете java.net.sll

Обращение к Web серверу
• Протокол передачи гипертекста HTTP (Hypertext Transfer Protocol)

• Текстовый протокол
• Основан на принципе обмена запросами и ответами
• Для передачи данных использует протокол TCP/IP

• Для установки сетевого соединения указываются
• IP адрес (или имя хоста которое преобразуется в IP адрес)
• Номер порта в диапазоне от 1 до 65535 (номера портов от 1 до 1024

зарезервированы)
• Различные сетевые службы имеют различные номера портов для подключения
к ним:

• К серверу электронной почты обычно подключаются через порт 25
• К серверу SSH обычно подключаются через порт 22
• К веб серверу обычно подключаются через порт 80

Адреса web страниц
• Единый указатель ресурсов URL (Uniform Resource Locator) это текстовая
строка, которая используется в протоколе HTTP для указания
местонахождения ресурса. URL содержит:

• Определение протокола
• Имя хоста или его IP адрес
• Номер порта (не всегда нужно указывать, так как каждый протокол имеет порт,

использующийся по умолчанию)
• Путь к документу или ресурсу (также указывается не всегда)

• Пример: http://www.cs.caltech.edu/people.html
• Протокол: HTTP
• Имя хоста: www.cs.caltech.edu
• Порт по умолчанию для HTTP: 80
• Документ на сервере: /people.html

Запрос web страницы
• Для того чтобы выполнить HTTP запрос надо:

• Подключиться к заданному порту заданного хоста используя
java.net.Socket, так как соединение происходит по протоколу TCP

• Отправить HTTP запрос нужной страницы
• Получить HTTP ответ содержащий требуемую страницу

• …или сообщение об ошибке

• Закрыть сокет, использующийся для связи
• Cетевые ресурсы надо освобождать после использования!

• Обработать полученный документ
• В нашем случае будем искать в нем другие URL

Подключение к серверу
• Для того чтобы подключиться к серверу для каждого соединения
создается сокет
• Требуется указать имя хоста или его IP адрес в параметре типа String
• И номер порта:

!

!
• Проблема:

• Что если сервера с таким именем не существует?
• Или он не “прослушивает” сообщения на указанном порту?

• Конструктор класса Socket сообщает об ошибках с помощью
исключений

webServer = "www.cs.caltech.edu";
webPort = 80;
Socket sock = new Socket(webServer, webPort);

Взаимодействие с web
сервером

• Если сокет не может подключиться к удаленному
серверу, он вызывает исключение

• Соединение так же может прерваться во время работы
• Ваш интернет робот должен перехватывать эти
исключения
• Обработка может быть очень простой: напечатайте

сообщение об ошибке и затем перейдите к следующему
URL

• Посмотрите в документации Java, какие типы
исключений следует обработать в вашей программе

Передача данных через
сокет

• После того как сокет открыт, из него можно извлечь ссылки на
входной (InputStream) и выходной (OutputStream) потоки
• OutputStream нужен для передачи данных удаленному хосту.
• InputStream нужен для приема данных от удаленного хоста.

• Проблема
• Классы InputStream и OutputStream не предназначены для передачи

текстовых данных
• Они созданы для работы с потоками байтов
• Чтения/записи байта или массива байтов
• Классы не могут работать с кодовыми таблицами символов
• Преобразование массивов байтов в объекты String большая проблема

Классы чтения и записи
• Классы Reader и Writer сделаны для потоков символов
• Объект InputStream можно “обернуть” в Reader

• Тогда объект Reader будет преобразовывать байты
полученные из InputStream в символы или строки

• Объект OutputStream можно “обернуть” в Writer
• Тогда объект Writer получая символы будет передавать

объекту InputStream байты
• Это именно то, что нужно для текстового протокола HTTP!

• Имеются несколько дочерних классов Reader и Writer
• Которые так же работают с InputStream и OutputStreаm

Отправка HTTP запроса
• HTTP запрос должен имеет вид:
!
!
!

• Пустая строка обязательна! ☺
• В первой строке указано имя документа или ресурса, который требуется

получить в ответ
• Если документ находится в корне веб сервера, указывать “/” надо обязательно

• Во второй строке указано имя хоста
• (Один физический сервер может обслуживать несколько виртуальных хостов)

• В третьей строке содержится указание серверу закрыть соединение после
завершения передачи ответа

HTTP запрос должен имеет вид:
GET /people.html HTTP/1.1
Host: www.cs.caltech.edu
Connection: close

Пример кода запроса

Socket sock = new Socket(webHost, webPort);
sock.setSoTimeout(3000); // Таймаут после 3 секунд
!
OutputStream os = sock.getOutputStream();
!
// true заставляет PrintWriter каждый раз полностью
// передавать данные в поток
PrintWriter writer = new PrintWriter(os, true);
!
writer.println("GET " + docPath + " HTTP/1.1");
writer.println("Host: " + webHost);
writer.println("Connection: close");
writer.println();
!
// Запрос отправлен! Сервер теперь должен ответить.

Получение HTTP запроса
• Для чтения строк ответа из сокета используйте класс

BufferedReader
• Этому классу на вход данные должен передавать другой Reader
• Для преобразования выходного потока сокета в Reader

используйте класс InputStreamReader:

!

!

• Метод br.readLine() надо вызывать до тех пор, пока он не
вернет null
• Для того чтобы это работало именно так, мы добавили к запросу

строку “Connection: close”

InputStream is = sock.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

Пример кода обработки
ответа

InputStream is = sock.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
!
while (true) {
 String line = br.readLine();
 if (line == null)
 break; // Конец чтения документа!
!
 // Обрабатываем полученную строку.
 System.out.println(line);
}

Обработка исключений в
поисковом роботе

• Продумайте глее и как добавить нужные обработчики
исключений

• Каждая из операций поискового робота по обработке веб
страницы:
1.Подключение к удаленному серверу через сокет

2.Отправка HTTP запроса

3.Чтение HTTP ответа

4.Извлечение URL из текста ответа
• Все эти операции могут приводить к вызову исключений

• Извлечение URL может и не вызывать исключения. Это зависит от
вашей реализации

Обработка исключений:
простой подход

• Простой подход
• Каждый шаг можно заключить в собственный блок try/catch

• Но имеет ли он смысл?
• Если на каком то из этих шагов происходит ошибка,

остальные теряют смысл!
• Исключение в шагах 1 – 3 приводит к завершению всей
операции поиска в веб странице
• На четвертом шаге, если разбор URL приводит к

исключению, надо просто перейти к следующему URL на
странице

Улучшенный вариант
обработки исключений

• Исключения должны обрабатываться по принципу один обработчик
на всю операцию

• Пример:
• Такой операцией может быть обработа одной веб страницы в поисковом

роботе.
• Улучшить структуру обработки ошибок в нашем случае можно так:

• Поместить код обработки одного URL в отдельную функцию.
• В этой функции операции могут вызывать исключения

• Исключения приводят к прерыванию работы и выходу из функции
• Каждое исключение приводит к завершению всей работы

• Код, вызывающий функцию сам обрабатывает возникающие в ней
исключения с помощью блока try/catch

Поиск строк
• Класс String имеет много полезных функций
• Для поиска символа или подстроки в строке можно использовать
одну из этих:
• int indexOf(int ch)
• int indexOf(int ch, int fromIndex)
• int indexOf(String str)
• int indexOf(String str, int fromIndex)
• или, lastIndexOf(...) для поиска с конца

• Все эти функции возвращают -1 если значение не найдено или
позицию в строке
• Допустимый диапазон индекса от 0 до length() -1

Обработка строк
• Получить подстроку из строки можно так:

• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

• Изменить регистр символов строки:
• String toLowerCase()
• String toUpperCase()

• Удалить пробелы в конце и начале строки:
• String trim()

• Заметим, что строки в Java неизменяемы
• Это означает, что все указанные операции возвращают новые объекты

String

Пример поиска слов
//TODO: получить откуда то строку и слово ...
String word = "after";
String line = …;
!
//Поиск слова в текущей строке.
int idx = 0;
while (true) {
 idx = line.indexOf(word, idx);
 if (idx == -1) // в строке больше нет таких слов
 break;
!
 //записать, что найдена еще одна копия слова.
 count++;
!
 //пропускаем эту копию слова, так чтобы
 //не найти ее снова в следующей итерации цикла!
 idx += word.length();
}

Поиск ссылок
• Найти ссылку в тексте немного труднее:
 Caltech

1)Ищем строку a href="

2)Если нашли, ищем закрывающие кавычки "

3)Текст между кавычками и есть URL

• Надо учесть, что в одной строке может быть несколько ссылок
• После извлечения URL переместите индекс в позицию за URL и

ищите следующий
• Но для простоты не нужно обрабатывать ссылки, имеющие

перенос на следующую строку.

Обработка деталей
• Создайте простой класс URLDepthPair чтобы следить за глубиной
просмотра найденных ссылок

• Первая ссылка находится на уровне 0
• Всем найденным на странице ссылкам присваивается уровень
страницы + 1
• Заносите в список новые объекты URLDepthPair созданные для всех

ссылок на странице
• После обработки страницы возьмите из этого списка следующая

ссылка для обработки
• Второй аргумент командной строки программы должен указывать
глубину просмотра поискового робота

• Эта стратегия не предусматривает обработку циклов …

Списки пар URL-глубина
• Для решения задачи со списками ссылок подходит класс LinkedList:
!
!

• Найдя новую ссылку, добавьте его к списку:
!

• Когда вам понадобится следующая ссылка для обработки:
!
!
!

• Когда URL обработан
• Создайте новый LinkedList для хранения ссылок
• В конце программы распечатайте все ссылки

LinkedList<URLDepthPair> pendingURLs =
 new LinkedList<URLDepthPair>();

pendingURLs.add(new URLDepthPair(linkText, childDepth));

while (!pendingURLs.isEmpty()) {
 nextURLPair = pendingURLs.removeFirst();
 ... // обработка этой пары ссылка-уровень
}

План повторного
использования кода

• Сделайте так, чтобы код обработки ссылок можно
было повторно использовать
• Поместите его в отдельный метод или несколько методов
• Это пригодится в 7 и 8 лабораторных работах

• На следующей неделе к программе добавятся новые
свойства:
• Многозадачное исполнение поиска
• Ссылки будут обрабатываться параллельно
• Доступ к общим ресурсам будет минимизирован

