
Язык программирования Java
Лекция 7

!
Перевод курса CS11 Java Track

Copyright (C) 2007-2011, California Institute of Technology

Содержание

• Все о потоках Java
• Замечания к заданию 7

Еще раз о потоках в Java
• Программа использует потоки для того чтобы
одновременно выполнять несколько задач
• Поток может иметь собственные локальные ресурсы
• А так же общие с другими потоками ресурсы

• Для доступа к общим ресурсам должны
использоваться атомарные операции
• Если не следовать этому правилу результат операций

будет непредсказуемым
• Общие ресурсы следует захватывать осторожно, чтобы

избежать тупиковых ситуаций и других подобных проблем

Зачем нужны потоки?
• Иногда в отдельных потоках выполняют “медленные” операции

• Например, передачу данных по сети
• Во время исполнения такой операции можно продолжать заниматься

другими задачами

• Потоки помимо прочего это мощная концептуальная модель построения
программного обеспечения

• Некоторые программы просто проще понять, когда в них используется
несколько потоков для решения разных задач

• Использование потоков требует дополнительных (как правило,
небольших) ресурсов

• Процессор должен переключать потоки для того чтобы дать каждому время
для исполнения

• Даже в многоядерной системе тратятся ресурсы на синхронизацию потоков

Задание
• На этой неделе сделаем поисковый робот быстрее!

• Он тратит много времени на отправку веб запросов и оживание ответов
• Добавим несколько потоков, в которых будут работать
самостоятельные поисковые роботы
• Каждый будет обрабатывать одну страницу
• Это позволит нам существенно увеличить производительность

программы
• (… до тех пор пока мы не открыли слишком много потоков)

• Нужно создать “пул ссылок”
• Роботы будут извлекать ссылки из этого общего пула, и добавлять в

него новые найденные ссылки

Пул URL ссылок

• Пул ссылок это общий ресурс
• Потоки роботов должны использовать атомарные

операции для работы с ним
• Иногда пул может быть пуст

• Как поток должен выполнять атомарные
операции надо объектом?

• Как поток должен ждать исполнения условия?

Атомарные операции
• В Java каждый объект имеет монитор

• Монитор это простой мьютекс (от “mutual exclusion/взаимоисключение”)
• Объект может быть захвачен одновременно только одним потоком

• Для захвата потока используется блок synchronized
!

!
• Исполнение потока блокируется до тех пор, пока он не захватит монитор

общего объекта
• После этого поток продолжает исполнение
• В конце синхронизируемого блока кода, поток автоматически

освобождает монитор объекта

synchronized (sharedObj) {
 ... // выполняем атомарную операцию над объектом
}

Пример FIFO
• Проблема поставщика и потребителя

• Один из потоков генерирует данные
• Другой поток потребляет эти данные
• Как должны взаимодействовать эти два потока?

• Простое решение : сделать очередь FIFO
• First In, First Out
• Поставщик и потребитель оба используют эту очередь

• Поставщик помещает данные в очередь
• Потребитель извлекает их оттуда

• Доступ к очереди из потоков должен быть синхронизирован

Простая очередь FIFO
• Очередь можно сделать с помощью класса LinkedList
• Максимальный размер очереди должен быть ограничен

• Если поставщик работает быстрее чем потребитель
очередь не должна бесконтрольно увеличиваться.

• Класс FIFO:
!

!

!

public class FIFO {
 private int maxSize;
 private LinkedList items;
!
 public FIFO(int size) {
 maxSize = size;
 items = new LinkedList();
 }
...

Добавление элементов в
FIFO

• Если в очереди есть место, добавляем объект и
возвращаем true

• Иначе ничего не делаем и возвращаем false:
• Код FIFO:

!

!

public boolean put(Object obj) {
 boolean added = false;
 if (items.size() < maxSize) {
 items.addLast(obj);
 added = true;
 }
 return added;
}

Извлечение элементов из
FIFO

• Если элемент имеется в очереди, извлекаем его и
возвращаем на него ссылку

• Если элемент отсутствует в очереди,
возвращаем null

• Код FIFO
!

!

public Object get() {
 Object item = null;
 if (items.size() > 0)
 item = items.removeFirst();
 return item;
} Удаление элемента из пустого

списка приводит к исключению

Проблема доступа к FIFO
из нескольких потоков

• Этот код не годится для использования в разных потоках
• LinkedList не имеет средств синхронизации доступа к списку из разных потоков,

поэтому одновременное добавление и извлечение элемента может привести к
непредсказуемому результату

• Еще хуже ситуация становится в случае, если поставщиков и потребителей
несколько

• Пример: имеется два потребителя и один элемент в очереди
!
!
!
!
!

public Object get() {
 Object item = null;
 if (items.size() > 0)
 item = items.removeFirst();
 return item;
}

В вызове get оба потребителя вызывая item.size() могут получить 1. Это
приведет к вызову исключения, когда оба попытаются извлечь последний

Синхронизация операций
FIFO

• Для того чтобы таких проблем не было, очередь должна
использовать синхронизированные блоки кода
!

!

!

!

!

!

• Метод put() тоже надо синхронизировать. Операции с
элементами списка должны располагаться внутри блока
synchronized

public Object get() {
 public Object get() {
 Object item = null;
 synchronized (items) {
 // этот поток теперь имеет эксклюзивный доступ
 // к элементам списка.
 if (items.size() > 0)
 item = items.removeFirst();
 }
 return item;
 }

Другая проблема FIFO
• Что если в очереди нет данных?

• Можно сделать цикл, который будет периодически
проверять наличие элементов в очереди

• Этот периодический опрос называется поллинг (англ. polling)

!

!

• Поллинг довольно дорого стоит
• Он сильно нагружает процессор
• Всегда следует попытаться найти другое решение

//Продолжаем проверять пока не появятся данные!
do {
 item = myFifo.get();
} while (item == null);

Пассивное ожидание
• Лучше всего если поток пассивно ждет нужное событие

• Переходит в спящий режим и затем снова просыпается и начинает работать
• Это можно сделать с помощью методов wait() и notify()
• Объявленных в классе java.lang.Object (см документацию API)

• После синхронизации на объекте
• (то есть на мониторе этого объекта)
• Поток может вызывать метод wait(), который переводит его в спящее

состояние
• Поток освобождает монитор перед переходом в спящее состояние

• Объект можно “ждать” только после синхронизации на нем
• Иначе будет вызвано исключение IllegalMonitorStateException

Выход из спящего
состояния

• Из спящего состояния поток может быть выведен
другим потоком
• Для этого другой поток должен синхронизироваться на

объекте
• Затем вызвать метод notify() или notifyAll() для того чтобы

возобновить работу всех потоков ждущих этот объект
• Если таких ждущих потоков нет, то при вызове notify()

или notifyAll() ничего не происходит
• Эти методы можно вызывать у объектов толко после
синхронизации над ними …

Уведомления
• Когда поток получает сообщение, он немедленно пытается
захватить объект на котором он вызвал wait()
• Функция wait() вызывается внутри блока synchronize…
• Но поток, который вызвал notify() по прежнему владеет блоком

• Когда поток, отправляющий уведомление освобождает
объект, один из потоков получивших уведомление,
захватывает блок в свою очередь.
• Следующий поток произвольно выбирается виртуальной

машиной Java
• Выбранный поток возобновляет исполнение и получает

исключительные права на объект синхронизации

Как использовать wait() и
notify()

• Стандартный сценарий выглядит так:
• Один из потоков не может продолжать работу, пока не

выполнится какое то условие
• Поток вызывает wait() и переходит в состояние ожидания
• Метод очереди get() может вызвать wait(), если очередь пуста

• Другой поток изменяет состояние объекта
• Ему известно о том что условие выполнено
• Он вызывает notify() или notifyAll() для того чтобы возобновить

работу всех ожидающий события потоков
• Метод очереди put() может вызвать notify() когда в очередь

добавляется новый элемент

Как использовать wait()
• Поток, ожидающий событие не должен по определению считать что событие,
которое он ждал, произошло

• Если несколько потоков ждали, используя один и тот же объект синхронизации,
и был вызван метод notifyAll, событие для обработки могло быть передано
сначала другому потоку

• Можно использовать wait() с таймаутом
• Тогда метод возвращает управление, если приходит сообщение о событии или

если истекает заданный интервал времени

• Также возможны “ложные” срабатывания
• Поток просыпается без уведомления
• Это возможно в некоторых реализациях JVM

• Из всего этого следует, что wait() надо использовать в цикле, дополнительно
проверяя условие после того как эта функция вернет управление

Вермемся к FIFO
Теперь используем метод wait() для работы с очередью:
!

!

!

!

!

!

public Object get() {
 Object item = null;
 synchronized (items) {
 // Этот поток имеет эксклюзивные права доступа
 // к элементам очереди
!
 // Ждем пока в очереди не появится элемент
 while (items.size() == 0)
 items.wait();

!
 item = items.removeFirst()
 }
 return item;
}

Всегда ждем в цикле, который
проверяет условие

Вывод потребителя из
состояния ожидания

• Метод put() используется для того чтобы отправить
потребителям уведомление о появлении нового элемента в
очереди:
!

!

!

!

!

!

public boolean put(Object obj) {
 boolean added = false;
 synchronized (items) {
 if (items.size() < maxSize) {
 items.addLast(obj);
 added = true;
 // элемент добавлен, надо разбудить потребителей.
 items.notify();
 }
 }
 return added;
}

Вызываем notify() на том же объекте,
который ждут другие потоки

Еще одна проблема…
• Если поставщик работает быстрее чем потребитель, он не может
ждать пока в очереди появится свободное место!
• Потребитель может ждать, но …
• Поставщик может только опрашивать очередь, чтобы выяснить, что в

ней нет места
• Наша реализация в действительности очень проста ☺

• В ней имеются и другие проблемы!
• Например, один и тот же объект используется для синхронизации

методов get() и put()
• Классы пакета java.util.concurrent содержат сложные реализации
очередей, пулов и других структур
• Они добавлены в версию Java 1.5! Эти классы написаны Дугласом Ли

Синхронизация по this
• Объект можно синхронизировать на себе самом

• Это особенно удобно, если объект используется для управления несколькими
общими ресурсами

• Надо быть осторожным – захват нескольких ресурсов вручную может
привести к тупиковой ситуации

• Вместо захвата items очередь может делать так:

!
!
!
!
!

public Object get() {
 Object item = null;
 // Захватываю свой собственный монитор.
 synchronized (this) {
 while (items.size() == 0)
 wait(); // Вызываю wait() на самом себе.
 item = items.removeFirst();
 }
 return item;
}

Синхронизированные
методы

• Синхронизация на this применяется очень часто
• В Java для это есть другой синтаксис:
!
!
!
!

• this захватывается в начале метода
• this освобождается в конце метода
• Внутри метода можно вызывать wait() и notify()

• Чтобы сделать класс “безопасным” для работы в многопоточном приложении
достаточно добавить модификатор synchronized ко всем его методам

• (кроме конструкторов, для которых это просто не нужно)

public synchronized Object get() {
 while (items.size() == 0)
 wait();
 return items.removeFirst();
}

Потоки и
производительность

• На синхронизацию потоков тратятся системные ресурсы
• Захват и освобождение мьютекса занимает время
• Не следует использовать синхронизацию в случаях, когда без этого

можно обойтись
• Плохие примеры:

• java.util.Vector, java.util.Hashtable
• Оба эти класса синхронизируют каждый свой метод!
• Не используйте их в приложениях с одним потоком (или, может быть,

вообще нигде не используйте?)

• Потоки должны захватывать общие ресурсы на минимально
короткое время
• Старайтесь свести к минимуму взаимодействие потоков друг с другом

Замечания к заданию 7
• Нужно создать пул объектов URLDepthPair

• Этот пул будет общим для всех потоков поискового робота
• Потоки робота извлекают ссылки из пула и добавляют в него новые найденные ссылки

• Внутренние поля:
• Один экземпляр класса LinkedList нужен для хранения ссылок, которые должны быть

просмотрены
• Другой экземпляр класса LinkedList должен хранить уже просмотренные ссылки

• Методы:
• Метод , возвращающий следующий экземпляр класса URLDepthPair для обработки

• Поток должен переходить в состояние ожидания, если в пуле отсутствуют объекты

• Метод , добавляющий в пул новый URLDepthPair для обработки
• Новый элемент всегда следует добавлять к списку просмотренных ссылок
• Если его глубина меньше максимальной, то еще и к списку ссылок, для просмотра
• Если элемент добавляется к списку ссылок для просмотра, то дополнительно надо отправить

сообщение потокам, ждущим заполнения пула

Наиболее сложная задача
• Когда завершается поиск? Как мы можем это узнать?

• Когда все потоки поискового робота переходят в состояние ожидания, работа
закончена

• (Хорошо чтобы еще очередь ссылок на просмотр была пуста!)

• Пул ссылок должен иметь счетчик ждущих потоков
• Это легко сделать:

• В конструкторе присвойте счетчику значение 0

• Инкрементируйте значение счетчика перед вызовом wait()

• Декрементируйте счетчик после того как wait() вернет управление

• Основной поток приложения может периодически проверять этот счетчик
• Ему известно, сколько потоков робота занято
• В конце работы, так или иначе, ему надо напечатать на экране результат работы
• Позаботьтесь о том, чтобы синхронизировать доступ к этому счетчику

Потоки робота
• Создайте класс CrawlerTask, который реализует интерфейс Runnable

• В CrawlerTask нужна ссылка на URLPool
• Подсказка: передайте ссылку на URLPool в конструкторе CrawlerTask

• Метод run() должен содержать цикл в котором:
• Из пула извлекается URL
• Загружается страница и в ней ищутся новые ссылки
• Найденные новые ссылки помещаются обратно в пул.
• Возвращаемся к началу цикла

• Каждая ссылка должна обрабатываться в вспомогательном методе (или нескольких
методах)

• Используйте код из прошлого задания

• Правильно обрабатывайте исключения
• Если при обработке одной ссылки произошла ошибка, переходите к обработке

следующей

Метод main робота
• Метод main() управляет всем процессом от начала до конца

• Получает начальную http ссылку, максимальную глубину и
количество потоков из параметров командной строки

• Создает пул ссылок и добавляет в него начальную ссылку
• Создает и запускает заданное число потоков

• Их можно поместить в массив, чтобы впоследствии удалить, но в этом
задании делать это не обязательно

• Проверяет пул с периодом 0.1 – 1 секунды, чтобы выяснить
завершена работа или нет

• Если работа завершена, печатает ссылки из списка просмотренных
URL

• Вызвает System.exit(0);

Работа с потоками
• Для создания потока надо создать класс реализующий интерфейс

Runnable
• Добавить свою реализацию метода run()

• Экземпляр этого класса надо указать в аргументах конструктора
класса Thread:
!

!
• Вызовите метод start() созданного объекта Thread
!

• Поток автоматически вызовет метод run() вашего объекта
• Поток завершит работу, когда завершится исполнение метода run();

CrawlerTask c = new CrawlerTask(pool);
Thread t = new Thread(c);

t.start();

Аккуратный опрос
• Используйте метод Thread.sleep() для вставки пауз между
проверками
• sleep() это статический метод
• Может вызывать исключение InterruptedException!
• Пожалуй, лучший способ периодического опроса

• Делается как то так:
!

!

!

!

while (pool.getWaitCount() != numThreads) {
 try {
 Thread.sleep(100); // 0.1 second
 } catch (InterruptedException ie) {
 System.out.println("Ошибка " +
 "InterruptedException, игнорируем...");
 }
}

Общая картина

Класс Lab7

Метод main()
- настройка пула
-запуск потоков
- контроль пула
- печать результатов

CrawlerTask

CrawlerTask

CrawlerTask

URLPool

на обработку

обработанные

счетчик

Потоки

.

.

.

Синхронизация пула
• URLPool содержит несколько общих ресурсов:

• Список ссылок для просмотра, список просмотренных ссылок,
счетчик потоков ожидающих данные для обработки, …

• URLPool может синхронизироваться на самом себе
• Это помогает избежать тупиковых ситуаций и других подобных

проблем
• URLPool должен иметь внутреннюю поддержку
синхронизации потоков
• Потоки поискового робота не должны самостоятельно

“вручную” выполнять операции synchronize/wait/notify над пулом
• Поведение потоков хочется также скрыть внутри пула

Литература по потокам
Java

• Doug Lea, Concurrent Programming in Java (2nd
ed.)

• Joshua Bloch, Effective Java

http://www.amazon.com/Concurrent-Programming-Java%C2%BF-Principles-Pattern/dp/0201310090
http://www.ozon.ru/context/detail/id/5047534/

